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Scaled Schrödinger Equation and the Exact Wave Function
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We propose the scaled Schrödinger equation and the related principles, and construct a general
method of calculating the exact wave functions of atoms and molecules in analytical forms. The nuclear
and electron singularity problems no longer occur. Test applications to hydrogen atom, helium atom,
and hydrogen molecule are satisfactory, implying a high potentiality of the proposed method.
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this  has the structure of the exact wave function. This is
because the variational principle gives the best possible

eration leads easily to the nuclear and electron cusp con-
ditions first derived by Kato [9]. The exact wave functions
To develop a general systematic method of solving the
Schrödinger equation (SE) and the corresponding relativ-
istic equation is of central importance in theoretical
physics and chemistry. So far, there was no general
method of solving the SE in an analytical form. Only
full configuration interaction (CI) is a practical method of
calculating the ‘‘exact’’ wave function, but the number of
the variables involved is astronomical and therefore the
application is limited. Furthermore, the full CI solutions
are actually far from the solutions of the SE, because the
basis sets are usually far from complete. In our series of
papers [1–6], we have studied a general method of solving
the SE by investigating the structure of the exact wave
function. Here, we introduce a variant of the SE and
propose a general method of calculating the exact wave
functions of atoms and molecules in analytical forms.
Test applications are given to some elementary systems.

In the nonrelativistic Born-Oppenheimer approxima-
tion, the atomic and molecular system is defined by the
Hamiltonian
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and is described by the exact wave function that is a
solution of the SE

H � E ; (2)

or the inverse Schrödinger equation (ISE) [5]

H�1 � E�1 ; (3)

where H�1H � HH�1 � 1. Note that in the ISE, H is
actually the positive Hamiltonian [5].

We summarize briefly the past results [1–6] to intro-
duce our background. A condition for the wave function  
to have the structure of the exact wave function is ex-
pressed as follows. When the unknown variables included
in  are optimized by the variational principle, and when
the resultant  satisfies the H-square equation [1–3], then
0031-9007=04=93(3)=030403(4)$22.50 
wave function and the H-square equation is valid only for
the exact wave function. From this criterion, we have
proposed the iterative CI (ICI) method and the simplest
extreme (or extended) coupled-cluster (SECC) method as
methods of constructing the exact wave function.

Suppose that we divide our H into ND parts, H �PND
I�1HI, and define the variable operator S by S �PND
I�1 CIHI with ND variables fCIg. Then, the ICI wave

function is defined by the recurrence

 n�1 � �1� Sn� n: (4)

The variables are optimized by the variational principle,
and, at convergence,  n is proved to be exact. Since each
step of the ICI is variational, its energy converges mono-
tonically to the exact value. When ND � 1, it is the
simplest ICI (SICI). The ECC wave function is defined by

 � exp�S� 0: (5)

The simplest one (SECC) for ND � 1 is proved to be
exact, but the optimal C would be minus infinite from a
different argument. On the other hand, the general ECC
(ND � 1) is not guaranteed to be exact [1,3], though it
may happen to become exact because of its highly non-
linear nature [3]. This was in contrast to the conjecture
given by Nooijen [7] and Piecuch et al. [8] (CCGSD is a
special case of ECCND for second-quantized Hamil-
tonian). Descriptions of the excited states with the ICI
and ECC methods were given in some detais in Refs. [2,4].
The above arguments are also valid for the inverse
Hamiltonian case [5].

Singularities.—The atomic and molecular Hamil-
tonians have nuclear and electron singularities in the
second and third terms, respectively, of Eq. (1). In the
SE of Eq. (2), the right hand side has no singularities, and,
therefore, these singularities caused by the Hamiltonian
must be canceled out within the left hand side of the SE.
(For example, in a hydrogen atom, the attractive Coulomb
force is canceled by the centrifugal force.) This consid-
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satisfy these conditions, and, therefore, no singularities
exist in the SE. However, for approximate wave functions,
this complete cancellation of the singularities inH does
not occur and some problems are caused. For example, in
Table I, the integrals of the nth power of the Hamiltonian
of the hydrogen atom give correct values for the exact
wave function, but diverge for the approximate wave
functions for n larger than 3.

In the ICI and ECC formalisms, there appear the
integrals over Hn with n � 3, so that these theories
have difficulties for atoms and molecules. This is true for
any theories that involve such higher powers of Hamil-
tonian [10–12]. But, when we use H�1 instead of H, such
a difficulty does not occur [5]: a problem there was how to
write the inverse Hamiltonian in a closed form, though
even the expanded form worked well [5]. We show in this
Letter an approach that is free from such a difficulty.

Scaled Schrödinger equation.—We introduce the scaled
Schrödinger equation (SSE) by

g�H � E� � 0; (6)

which is equivalent to the SE. The function g, called the
scaling function, is a function of electron coordinates. It
is a multiplicative operator and generally does not com-
mute with the Hamiltonian. It is always positive (or
negative) and nonzero except at the singular points.
Even at the singular point r0,

lim
r!r0

gV � 0; (7)

where V is the potential operator in the Hamiltonian, in
order not to eliminate the information of the Hamiltonian
at the singular points: the singularity itself is also im-
portant information of the Hamiltonian. In other words,
if we introduce 1=g, its singularity at r0 is less steep than
or equally steep as that of the potential in the
Hamiltonian.

The proof of the equivalence between the SE and SSE is
almost self-evident. If SE is valid, SSE is valid.
Contrarily, if SSE is valid, by multiplying 1=g from the
TABLE I. Integrals of the higher powers of the Hamiltonian and
type and Gaussian-type orbitals.

Operator Q ina,b,c Slate
h jQj i=h j i Exact (� � 1:0)

H �0:5
H2 0.25
H3 �0:125
�H� �1

Hg 
 �gH�2 �0:5625
HgHgH �0:25
HgH2 �0:1875
HgH3 0.093 75

aH � � 1
2
d2

dr2
� 1

r
d
dr�

1
r . b� � � 1

r . cg � r.
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left of the SSE, we obtain the SE. This is valid even at the
singular points because of Eq. (7).

A choice of g is g � 1=��vne � vee�, where vne and
vee are the nuclear-electron attraction operator and
electron-electron repulsion operator, respectively. A dif-
ferent choice is g � �1=vnevee.

Variational principle and square theorem for the
SSE.—The variational principle and the square theorem
are important for developing the theory of the exact wave
function. From Eq. (6), the variational formula for the
SSE is written as

h� jg�H � E�j i � 0 (8)

for arbitrary � . This principle may also be used to
calculate the best possible wave function within the given
functional form of  . The energy E may be defined by
E � h jgHj i=h jgj i, which is called scaled energy
and is different from the Ritz energy, E � h jHj i=
h j i. The scaled energy does not necessarily have the
stationary property, different from the Ritz energy. For
the exact wave function, both scaled and Ritz energies
become equal to the exact energy.

The square theorem for the SSE is written as

h j�H� E�g 
 g�H � E�j i � 0; (9)

which is valid only for the exact wave function that
satisfies the SSE or SE. The proof is very simple.
This equation is rewritten as

R
jg�H� E� j2d� � 0,

whose integrand is always positive or zero, and, therefore,
the integrand must be zero in order that the sum of them
is zero, which leads to the SSE. The converse is self-
evident. (Q.E.D.)

If  is chosen such that its variation put into the varia-
tional principle, Eq. (8), leads to the square theorem,
Eq. (9), then this  has the structure of the exact wave
function, since this  is guaranteed to become exact after
variational calculation.

Simplest ICI and simplest ECC theories based on the
SSE.—We can formulate the ICI and ECC theories
associated with the SSE. From the above argument, the
the scaled Hamiltonian of the hydrogen atom over the Slater-

r-type Gaussian-type
Approximate (� � 0:8) � � 0:3

�0:48 �0:424 038 7
0.4608 0.488 653 5
�1 �1

�1 �1

�0:624 �0:140 239 6
�0:2624 �0:071 178 5
�0:245 76 �0:539 667 8

1 1
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simplest ECC (SECC)

 � exp�Cg�H� E�� 0; (10)

and the simplest ICI (SICI) defined by the recursion
formula

 n�1 � �1� Cng�H � En�� n (11)

are exact when their variables are determined by the
variational principle.

Square theorem for the partitioned Hamiltonian and
the ICIND method.—The square theorem is generalized
with the partitioned HamiltonianH �

PND
I�1HI. Namely,

when the partitioned square theorem,

h j�H � E�g 
 g�HI � EI�j i � 0; (12)
030403-3
holds for all I (I � 1; . . . ; ND), then this  is exact. Here,
EI is defined by h jg�HI � EI�j i � 0. The proof is
straightforward and so not given here.

Based on the partitioned square theorem, the ICI
theory that involves ND variables (ICIND) is formulated.
We introduce the S operator by

Sn �
XND

I

CI;ng�HI � EI;n� (13)

and define the ICI wave function by using Eq. (4) again
(note that the definition of the S operator is different).
When this ICIND is calculated with Eq. (8), it gives the
exact wave function at convergence.

The secular equation at nth iteration is written as
h njg�H � En�1�j niC0;n �
X

I

h njg�H � En�1� 
 g�HI � EI;n�j niCI;n � 0 (14)

and

h nj�HJ � EJ;n�g 
 g�H � En�1�j niC0;n �
X

I

h nj�HJ � EJ;n�g 
 g�H � En�1�g�HI � EI;n�j niCI;n � 0 (15)
TABLE II. Free ICI calculation based on the sSE for the
hydrogen atom starting from  0 � exp��1:5r�.

Iteration Mn
a Ritz energy Scaled energy

0 1 �0:375 �0:625
1 2 �0:491 025 404 �0:512 259 526
2 3 �0:499 316 143 �0:501 470 244
3 4 �0:499 954 132 �0:500 144 830
4 5 �0:499 997 229 �0:500 011 697
5 6 �0:499 999 844 �0:500 000 825
6 7 �0:499 999 992 �0:500 000 053
7 8 �0:500 000 000 �0:500 000 003
8 9 �0:500 000 000

aNumber of independent functions.
for all J (J � 1; . . . ; ND). When we do not partition the
Hamiltonian, it is SICI, and we see from Table I that all
the integrals involved exist.

Free ICI Method.—The ICI method for calculating the
exact wave function is characterized by two features. (1) It
generates the functions that converge iteratively to the
exact wave function. (2) The number of the variables is
small and fixed to ND throughout the calculations.

Let us now relax the second property. Namely, we use
all the independent functions f�kg

�n� included in the nth
iteration function of the SICI given by Eq. (11) for ex-
panding our wave function, namely,

 n�1 �
XMn

k�1

ck;n�k; (16)

whereMn is the number of the independent functions. The
coefficient ck;n is calculated by the ordinary Ritz varia-
tional principle. Since the functions�k are generated with
the scaled Hamiltonian, we no longer have the singularity
problem. We call this method the free ICI method. Since
the ICI formulation is guaranteed to reach the exact wave
function, this free ICI gives the best possible wave func-
tion, in a variational sense, at each iteration. When Mn is
not large, we need not keep it to ND. We further note that
in the free ICI, no accumulation of errors occurs, since no
variables of the earlier iteration step is used in the later
iteration step. We can start nth iteration step without
performing the earlier n� 1 iterations.

We apply the present ICI method based on the SSE to
the analytical calculations of the exact wave functions of
hydrogen atom, helium atom, and hydrogen molecule.

Hydrogen atom.—The Hamiltonian for the s state of
the hydrogen atom is H � � 1

2
@2

@r2
� 1

r
@
@r�

Z
r . The scaling

function is chosen as g � r. We performed the free ICI
using  0 � exp���r� with � � 1:5. � � 1:0 is the exact
wave function. We see from Table I that the singularity
problem does not occur in the present method. Table II
gives the results. As the iteration proceeds, the number of
the independent functions increases one by one and the
Ritz energy converges after seven iterations and the
scaled energy by eight iterations to the exact energy up
to nine decimal figures.

Helium atom.—The helium atom has both nuclear and
electron singularities and therefore is very interesting.
There are a lot of calculations in the literature with
various types of functions [13–16]. Though these wave
functions were cleverly formulated, the physics behind
them was not necessarily clear, except for the first few
dominant terms. In the present ICI formalism, the wave
function is automatically generated in an analytical form,
once we choose the initial function  0 and the scaling
factor g, and guaranteed to approach the exact wave
030403-3



TABLE III. Free ICI calculation based on the sSE for the
helium atom with  0 and g given in the text.

Iteration Mn
a Ritz energy Optimal �

0 1 �2:847 656 250 1.6875
1 6 �2:901 577 012 1.6728
2 26 �2:903 708 675 1.8803
3 74 �2:903 723 901 2.0330
4 159 �2:903 724 347 2.1998
5 291 �2:903 724 373 2.3307
6 481 �2:903 724 376 2.4862

Best valueb �2:903 724 377

aNumber of independent functions. bReference [16].
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function.We want to test how good this automatic method
is. For general atomic and molecular systems, it is diffi-
cult to estimate the functional form of the exact wave
function only by intuition as cleverly as in the helium
atom case.

We introduce the coordinate defined by s � r1 � r2,
t � �r1 � r2, u � r12 with s � u � jtj. We choose the
initial function by  0 � exp���s� with� as a variational
parameter and the scaling function by g � u s

2�t2
s to

prevent nuclear and electron singularity problem.
Table III summarizes the result of the free ICI based on

the SSE. As the iteration proceeds, the Ritz energy ap-
proaches the best variational value, �2:903 724 377 a:u:,
reported in the literature [16]. At the fifth iteration,
the free ICI energy was �2:903 724 373 a:u: with 291
independent functions, and at n � 6, it was �
2:903 724 376 a:u: with 481 functions. These energies
were higher by only 4 and 1 nhartrees, respectively,
from the best value, which guarantees the validity of
the present method. We particularly note that these results
were obtained automatically by the ICI algorithm as
described above. The present ICI wave function included
the terms of both positive and negative powers of the
variable s. It is different from the Hylleraas expansion
that includes only positive powers of s, t, and u, but closer
to the Kinoshita one, though different in higher-order
terms. The functional form of the ICI wave function
depends on the choices of the zero-order wave function
 0 and the g factor, and, in this sense, it supports the
general Thakkar-Koga expansions [16]. The Hylleraas
expansion actually corresponds to choosing g � u�s2 �
t2� different from the present one. Examinations of the
dependence on  0 and g will be given in a forthcoming
paper.

Hydrogen molecule.—The free ICI method has also
been applied to a hydrogen molecule with RH-H �
1:4 a:u: Using elliptic coordinate [17], the second iteration
of the free ICI with the initial function  0 �
exp����'1 � '2�=2��1� (� (2� with � � 2:2 and g �
(�'21 �)2

1��'
2
2 �)2

2�='1'2 gave the Ritz variational en-
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ergy of �1:174 475 703 a:u: with 609 independent func-
tions. This energy is lower than the (nonrelativistic) value
of �1:174 475 686 a:u: obtained by Kolos in 1994 [18].
More details will be published in the near future.

Conclusion.—Good performance of the calculations
particularly for the helium atom and the hydrogen mole-
cule implies a high potentiality of the proposed method.
It is noteworthy that their ICI wave functions are different
from the existing ones. Thus, the present ICI formalism
based on the SSE provides a general systematic method
for calculating the exact wave functions of atoms and
molecules in an analytical form. For He and H2,
Hylleraas, James-Coolidge, Kolos, and others were clever
enough to imagine the exact wave functions only with
intuition. But for general molecules, it is difficult to
estimate the analytical form of the exact wave function
only by intuition, but the present method generates it
automatically, since the differentiations (involved in the
Hamiltonian) are always possible, and, furthermore, the
integrals in the secular equation step have no singularity
problem. It is guaranteed that at convergence we will get
the exact wave function. When (analytical) integrations
are difficult, the Monte Carlo method [19] may provide a
useful tool.
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