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Stochastic Gain in Population Dynamics
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We introduce an extension of the usual replicator dynamics to adaptive learning rates. We show that a
population with a dynamic learning rate can gain an increased average payoff in transient phases and
can also exploit external noise, leading the system away from the Nash equilibrium, in a resonancelike
fashion. The payoff versus noise curve resembles the signal to noise ratio curve in stochastic resonance.
Seen in this broad context, we introduce another mechanism that exploits fluctuations in order to
improve properties of the system. Such a mechanism could be of particular interest in economic

systems.
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Game theory [1] describes situations in which the suc-
cess or payoff of an individual depends on its own action
as well as on the actions of others. This paradigm can be
applied to biological systems, as evolution through natu-
ral selection can be viewed as an optimization process in
which the fitness landscape changes with the state of the
adaptive populations [2]. Evolutionary game theory fo-
cuses mainly on systems with a single fitness function for
all individuals, which is identified with the payoff func-
tion of a game [3—5]. In nature, often different popula-
tions with different ambitions interact with each other, as
shoppers and sellers [6], attackers and defenders [6], or
males and females [5]. Here the payoff functions are
different for the interacting populations. A mean-field
description of such asymmetric conflicts is given by the
coupled replicator equations [4,5,7]. These equations have
a very rich dynamical behavior and can even display
Hamiltonian chaos [8,9]. In previous work [3—5] it has
been tacitly assumed that both populations have the same
adaptation mechanisms. But it seems to be natural that
different mechanisms are applied by the interacting
populations, e.g., different adaptation rates. Here we ana-
lyze such systems for the case that both populations have
slightly different adaptation mechanisms. We assume that
one population can control its own adaptation rate. This
alters the velocity when the system is approaching the
stable Nash equilibria [10] in strategy space, leading to an
increased average payoff.

In real systems, fluctuations disturbing the system are
to be expected. Such disturbances can arise from a variety
of effects, e.g., errors of the players [11], deviations from a
perfectly mixed population, or immigration of individu-
als with different strategy distributions. So far, stochastic
extensions to the replicator dynamics have mainly been
analyzed in the context of equilibrium selection [12,13].
Here we show that a population with an adaptive learning
rate can obtain an increased payoff if these fluctuations
are present. For small noise intensities the average payoff
increases, while very large fluctuations can no longer be
exploited, leading to a decrease of the average payoff.
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This recalls the stochastic resonance effect [14—17],
where the signal to noise ratio of a system is improved
for intermediate noise intensities. In contrast to the usual
stochastic resonance, a periodic force is not involved
here, making the mechanism more similar to coherence
resonance [18]. Seen in this broader context, we introduce
another mechanism that exploits fluctuations in order to
improve the performance of the system.

We consider two adaptive species X and Y —each with
different strategies—that are involved in a repeated
game. Both populations have different objectives de-
scribed by payoff matrices P, and P,. The fraction of
individuals x; that adopt a certain strategy i grows propor-
tional to the relative payoff of the strategy i; the same
holds for Y. In the presence of noise, this coevolution can
be described by the coupled replicator equations

X = xpm [1F = (IN] + &7
yi =y I} = ()] + &,

where 7, and 7, are the learning rates of the populations.
We assume for simplicity that the noise &; is Gaussian
with autocorrelation <§ff(t)§§-(s)) = 026,;6,;8(t — s) asin
Ref. [12]. We also follow Ref. [12] in choosing reflecting
boundaries. The payoffs are defined as II} = (P, -y),,
(I1*) = xT - P, -y, and similarly for y.

We extend the usual replicator dynamics by introduc-
ing adaptive learning rates as

1, = 1 — tanh(a,All), 2

(D

where ATl = (IT*) — (IT”) is the time dependent differ-
ence between the average payoffs of the populations and
a, =0 is a “perception ability” of the population. In
order to maintain the basic features of the replicator
dynamics, the learning rate must be a positive function
with {(n) = 1, which is ensured by Eq. (2). For a, > 0 the
population X learns slower if it is currently in a good
position; otherwise, it learns faster. The value of «,
determines how well a population can assess its current
state. The adaptive learning rate leads to a faster escape
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from unfavorable states, while on the other hand the
population tends to remain in preferable states. Other
choices for 7, which ensure these properties mentioned
above will not alter our results. In the following, we focus
on a setting where only one population has an adaptive
learning rate 7, as in Eq. (2).

The noise introduced above drives the system away
from the Nash equilibrium and leads for small amplitude
to a positive gain of the population with an adaptive
learning rate, whereas for large noise amplitudes the
fluctuations smear out the trajectories in phase space so
strongly that they can no longer be exploited. Hence, we
expect an optimal noise effect for intermediate values of
o. In order to be able to compare the payoffs of both
populations, we assume that the dynamics starts from the
Nash equilibrium.

As a first example, we consider the zero-sum game
“matching pennies” [3,19]. Here both players can choose
between two options * 1. Player one wins if both players
select the same option and player two wins otherwise.
The game is described by the payoff matrices

_ [+ -1\
Px—<_1 +1>— P, 3)

The replicator equations follow from Egs. (1) and (3) as

x=-2nxQ2y—1Dx—-1)+ &,
y=+2n,yQx— Dy —1) + ¢,

where x = x5 and y = yq. Let us first consider the zero
noise limit in the case n, = 1, = 1. As for all zero-sum
games, i.e., P, = —P;, the system (1) without noise be-
comes Hamiltonian and has a constant of motion [20].
Here the constant is given by H(x, y) = —2In[x(1 — x)] —
21n[y(1 — y)]. The trajectories oscillate around the Nash
equilibrium at x = y = 1/2. H(x, y) is connected to the
temporal integral of the average payoff (II,) =
(x")T - P, -y during a period with (IT*) > 0,
1 11

‘/hUTth=-—}Hx®Q4 o), 5)
1

0

4

where (x, y) = (x,3) at 1o and (x, y) = (4, xo) at #;.

If we include adaptive learning rates (2) into the sys-
tem, we find H(x, y) = —2tanh(a, AII)AII =< 0, vanish-
ing for a, = 0. Hence, adaptive learning rates dampen
the oscillations around the Nash equilibrium, and the
trajectories in the x — y plane spiral towards the Nash
equilibrium where (II,) = (II,) = 0 (see Fig. 1). In addi-
tion, this leads to an increased payoff of one population.
As the matrices (3) describe a zero-sum game, it is
sufficient for a population if it knows its own current
average payoff (AIl) = 2(I1 ).

Numerical simulations for a, > 0 show that the tem-
poral integral of the payoff becomes

< ﬁ ['<Hx>dt>
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FIG. 1. Matching pennies: Comparison between the behavior
of a population with a constant learning rate [i.e., &, = 0 (thin
lines)] and a population with an adaptive learning rate [per-
ception ability e, = 10 (thick lines)]. The opponent has in both
cases a constant learning rate n, = 1. Left: Trajectories in
strategy space. Arrows show the vector field of the replicator
dynamics. Population X has positive (negative) average payoff
in gray (white) areas. Right: Time development of the average
payoff of the population X. The adaptive learning rate increases
the time intervals in which the corresponding population has a
positive payoff, dampening the oscillations around the Nash
equilibrium [21].

The averaged initial value H(x,, yo) can be calculated as
J§ dxodyoH(xo, yo) = 8. For t — oo the system relaxes to
the Nash equilibrium where H = 81n2. Hence, we find for
the average cumulated payoff with ( [ ‘,’(‘)’(Hx>dt)(x(),y0) =
— %(8 In2 — 8) = 0.307. Numerical simulations yield
0.308 = 0.005 independent of «. We conclude that a
population can increase its average payoff if it has an
adaptive learning rate «, > 0 and if the game does not
start in the Nash equilibrium. The adaptation parameter «
influences only the time scale on which the Nash equilib-
rium is approached.

Small noise intensities drive the system away from the
fixed point and the population with the adaptive learning
rate gains an increased payoff. If the noise amplitude o
becomes too large, the trajectories will be smeared out
homogeneously over the positive (gray) and negative
(white) payoff regions in phase space (Fig. 1). This im-
plies that the average gain of population one decreases to
zero; cf. Fig. 2. Although the average payoff is very small
even for the optimal noise intensity, the cumulated payoff
increases linearly in time. This means that for long times
the gained payoff accumulates to a profitable value.

As a second application we analyze the effect of adap-
tive learning rates and noise on the prisoner’s dilemma.
We use the standard payoff matrix [22]

_(3 0\_
Px_<5 1>_Py’ (7)

where rows and columns are placed in the order ““‘coop-
erate” and ‘“‘defect.”” As this game is not a zero-sum game,
the population with the adaptive learning rate must be
able to compare its own average payoff with the oppo-
nent’s average payoff. The replicator dynamics of this

system is determined by Egs. (1) and (7),
X =xn,(x = DA +y) + &, 5
§=yny(v = (1 +2) + &, ®)
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FIG. 2. Matching pennies: Average payoff of a population FIG. 3. Prisoner’s dilemma: Average payoff difference of a

with an adaptive learning rate against a population with a
constant learning rate under the influence of noise for different
noise intensities (a, = 0, averages over 2 X 10* initial condi-
tions and 2 X 10* time steps; see [21] for further details).

There is a stable fixed point in the Nash equilibrium x =
y = 0 where both players defect and an unstable fixed
point for mutual cooperation, i.e., x =y = 1.

The average payoff difference under the influence of
noise is similar as in matching pennies. Small fluctua-
tions lead the system slowly away from the Nash equilib-
rium and tend to increase the payoff. If the fluctuations
are too large, they disturb the population with adaptive
learning rates and the payoff decreases again (see Fig. 3).
Interestingly enough, here too much noise even leads to a
decreasing payoff difference.

In order to describe the “stochastic gain™ effect ana-
lytically, we introduce a simplified model. A lineariza-
tion of Eq. (8) around the stable Nash equilibrium leads
for constant learning rates to x = —n,x + £, and y =
—n,y + &,. We now analyze a game in which the repli-
cator dynamics is given by these linear equations and
include adaptive learning rates based on the payoffs for
the prisoner’s dilemma. With AIl = —5(x — y) the adap-
tive learning rate 7, becomes 7, = 1 + tanh[5a(x —
y)] =1+ 5a(x —y) for a, x, y < 1. The simplified sys-
tem can be viewed as a small noise expansion of the
prisoner’s dilemma, where the trajectory stays close to
the Nash equilibrium. For 7, = 1 the simplified noisy
replicator equations read

(%9a)
(9b)

¥=-x—axx—y+¢&,
y=-y+¢,

where a' = 5a. The effect of different constant learning
rates is discussed in Ref. [23]. The mechanism we intro-
duce here is more intricate, as the adaptive learning rate
leads to a dynamical adjustment of the learning rate, and
the average of 7, = 1 + a’(x — y) over all possible strat-
egiesis 7, = I.

population with an adaptive learning rate against a population
with a constant learning rate for different noise intensities. The
negative payoffs arise from the fact that we have n, < 7, for
x <y (At = 0.01, a, = 0, averages over 2 X 10* initial con-
ditions and 2 X 10* time steps).

Equation (9b) describes an Ornstein-Uhlenbeck pro-
cess [24]; here the dynamics is restricted to 0 =y =< 1.
The Fokker-Planck equation [25] for p, = p,(y, t|yo, to),

=i< +”_2i)
ay\Pr TP

has the stationary solution pj = N ye_yz/ o’ where
Nt = [} e’/ dy. We find the mean value (y(c)) as

Py (10)

ol —e 77

Jrert ()

y is a correlated stochastic process which appears in
Eq. (9a) as a multiplicative noise. Numerical simulations
indicate that we may neglect the stochastic nature of y
and replace it by (y) for small «. This leads to an approxi-
mated Fokker-Planck equation for p, = p,(x, t|xy, 0),

1
<y>=f0 dypyy = (1)

d o’ d
y = | — + S p | 12
P dx[ a()px + = dxpx} (12)
where a(x) = —x — xa'(x — (y)). Since x is (similarly to

y) also restricted to 0 = x = 1, we find the stationary
solution

X2 2a'x3

302 o? (13)

pi=N exp|: + /() }

o2
with the normalization constant JN',. Since x is typically
of the order of ¢ for o < 1, the term x?/o? is finite.
Therefore, we can expand Eq. (13) for o’ < 1 and obtain
by expanding (x) again an analytical expression for

(AIT) = =5((x) = (),

__/d_/‘72_3 2 T T P I 2
(AIl) = =5« w(x)—Sa{j 8oy(l — y)* + 6%(1 y)[gy 80‘(1 'y)} 57<§+0>}, (14)

where 6 = m and y = ¢~1/7". The asymptotics of Eq. (14) can be computed as (AIl) = «'/(24¢?) for o > 1 and
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FIG. 4. Simplified model: Comparison of the average payoff
difference (AIT) from a simulation of Egs. (9a) and (9b) and the
analytical function Eq. (14) (Ar = 0.01, &’ = 5a = 0.1, aver-
ages over 4 X 10* time steps and 4 X 10* realizations).

(ATI) = /(3 — 2)o? for o < 1. We stress that this sim-
plified system which consists of a stable fixed point with a
linear adaptive learning rate in the presence of noise is the
simplest possible model that describes the stochastic gain
effect. Figure 4 shows a comparison between the analyti-
cal payoff difference Eq. (14) and a simulation of
Egs. (9a),(9b).

To summarize, we have introduced an extension to the
usual replicator dynamics that modifies the learning rates
using a simple “win stay—lose shift” rule. In this way, a
population optimizes the payoff difference to a competing
population. This simple rule leads to a convergence to-
wards the mixed Nash equilibrium for the game of
matching pennies [26]. Even in games with stable Nash
equilibria as the prisoner’s dilemma, transient phases can
be exploited, although the basins of attraction are not
altered, as, e.g., in Ref. [23]. Weak external noise drives
the system into the transient regime and leads to an
increased gain for one adaptive population.

In conclusion, we have found a learning process which
improves the gain of the population with an adaptive
learning rate under the influence of external noise.
Fluctuations lead to an increased payoff for intermediate
noise intensities in a resonancelike fashion. This phe-
nomenon could be of particular interest in economics,
where interactions are always subject to external distur-
bances [6,13,27].
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