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Nonlinear Transport near a Quantum Phase Transition in Two Dimensions
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The problem of nonlinear transport near a quantum phase transition is solved within the Landau
theory for the dissipative insulator-superconductor phase transition in two dimensions. Using the
nonequilibrium Schwinger round-trip Green function formalism, we obtain the scaling function for the
nonlinear conductivity in the quantum-disordered regime. We find that the conductivity scales as E2 at
low fields but crosses over at large fields to a universal constant on the order of e2=h. The crossover
between these two regimes obtains when the length scale for the quantum fluctuations becomes
comparable to that of the electric field within logarithmic accuracy.
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When an electric field is applied to a system near a
quantum critical point, nonlinear transport obtains. The
nonlinearity arises because the length scale [1] associated
with the electric field scales as ‘E / E�1=�1�z�, where z is
the dynamical exponent. As it is the ratio of the electric-
field length scale to the correlation length, � � ���,
which enters the resultant dc resistivity,

	�T; E� � f��=T1=�z;�=E1=��z�1��; (1)

a nonlinear electrical response is inescapable. Here � is
the distance from the critical point. Nonlinear transport
according to Eq. (1) is expected to hold as long as the
temperature is low enough so that the length scale asso-
ciated [2] with temperature, ‘T � 1=T1=z, exceeds that of
the electric field, 1=T1=z � ‘E. Because of the additional
factor of z that enters the electric-field scaling contribu-
tion to the conductivity, simultaneous scaling of the re-
sistivity with respect to temperature and electric field
enables a direct determination of both the correlation
and dynamical exponents, � and z, respectively, and,
hence, a complete characterization of the critical proper-
ties. Despite its obvious importance, electric-field scaling
persists as the outstanding problem in quantum criticality
because no theoretical account has been put forth to
explain how quantum fluctuations conspire to yield non-
linear transport. The primary theoretical hurdle is
simple: A successful theory of nonlinear transport must
lie outside the standard Kubo or linear response formal-
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ism. Experimentally, the problem is complicated by the
fact that, in a wide range of systems exhibiting quantum
critical points [3–6], the I � V characteristics which
are highly nonlinear at small fields all become linear
at large fields. In fact, the I � V characteristics for vary-
ing values of j�j all attain a universal slope as E! 1.
Hence, a successful theory must uncloak the origin of this
crossover.

Within the Schwinger [7] round-trip double-time
Green function formalism (also known as the Kadanoff-
Baym [8], Keldysh formalism [9]), we evaluate the cur-
rent for arbitrary electric field simply by calculating the
appropriate Green function. While the formalism can be
applied to any critical theory, we focus on the Landau
theory for the insulator-superconductor transition in
which the dynamics are determined by an Ohmic bath;
that is, z � 2.When temperature is the smallest parameter
(quantum-disordered regime), a crucial quantity which
enters both the conductivity and the inverse correlation
length,m2, is the ratioQ � �e�E�2=3=� (here e� � 2e, the
charge of a Cooper pair). For Q
 1, corrections due to
the field are subdominant and m2 � �= ln�1=��, whereas
for large field, m2 � ��e�E�2=3= ln�1=�e�E�2=3�, � a
constant. In the quantum-disordered regime, the static
conductivity scales as Q2 for Q
 1, whereas in the
large-field limit, Q� 1, linear transport emerges with
a universal constant, ��E� � 0:46e2=h, that is in qualita-
tive agreement with experiments [3–6].

The starting point for our analysis is the minimal
Landau-Ginsburg imaginary-time action,
F� � �
Z
d2r

Z
d�

��������
�
r�

ie�

�h
A�r; ��

�
 �r; ��

�������
2
�j@� �r; ��j2 � �j �r; ��j2 � �U=2�j �r; ��j4

�
�Ldis; (2)
required to model quantum fluctuations and dissipation
near the zero-resistance quantum critical point. In Eq. (2),
A�r; �� is the vector potential, e� � 2e, and � is the bare
distance to the quantum critical point. In terms of the
Matsubara frequencies, the dissipation term, Ldis �
�
P

k;!n
j!njj �k; !n�j

2, corresponds to the phenomeno-
logical Ohmic model introduced by Caldeira and
Leggett [10], in which � measures the strength of the
dissipation. The order parameter  �r; �� is the standard
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two-component complex field whose expectation value is
nonzero in the superconducting phase. Our motivation for
introducing dissipation, which is expected to be strong
(�� 1), is twofold. First, the second-derivative term now
becomes irrelevant. Consequently, the zero-temperature
transition falls into the z � 2 universality class. Such a
universality class describes a 2D metal to high-Tc super-
conductor transition in which superconductivity is de-
stroyed by impurities [11]. Second, as we will see, z � 2
dynamics are inherently easier to solve using the
Schwinger [9,12] technique than is the corresponding
z � 1 problem. Nonetheless, the generality of our conclu-
sions leads us to believe that similar results must hold for
the z � 1 case as well.

As the problem we wish to treat is inherently out of
equilibrium, we resort to the real-time ‘‘round-trip’’
Schwinger formalism [7–9,12] which is ideally suited
for treating problems in which an asymmetry exists be-
tween forward and backward evolution in time. We will
be brief in our presentation of this technique as it is well
documented in the literature [9,12,13], and our notation
will follow that of Lifshitz and Pitaevskii [12]. To use the
real-time formalism, one needs to rewrite the action
[Eq. (2)] as an integral over the Keldysh contour. A
constant in space and time electric field is assumed to
enter the action via the vector potential, A�t� � �Et.
This gauge choice allows for all functions to be Fourier
expandable in space, since the full translational invari-
ance is retained. We define the time ordered and antitime
ordered Green functions:

iG��
p �t1; t2� �

Z
p
eip�r�r0�hT� �r; t1� ��r0; t2��i;

iG��
p �t1; t2� �

Z
p
eip�r�r0�h ~TT� �r; t1� ��r0; t2��i:

(3)

Here
R
p �

R
d2p=�2$�2. We will need also the nontime

ordered functions,

iG��
p �t1; t2� �

Z
p
eip�r�r0�h ��r0; t2� �r; t1�i;

iG��
p �t1; t2� �

Z
p
eip�r�r0�h �r; t1� ��r0; t2�i;

(4)

the last of which is directly related to the expectation
value of the current operator through

J �t� �
�2ie�

�h

Z
p
d2p

�2$�2
G��

p �t; t�: (5)

The average values in these expressions are over all states
of the system, not simply equilibrium ones. Since the four
functions in Eqs. (3) and (4) forming a 2 by 2 matrix, ĜG,
are not independent, one employs the so-called Keldysh
rotation to work with the three independent functions
GR�GA� � G�� �G���G���, GK � G�� �G��. The
matrix of the exact Green functions ĜG is connected to
that of the Green functions for free quasiparticles ĜG�0� via
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the Dyson equation [12], ĜG � ĜG�0� �
RR
ĜG�0��̂� ĜG , in

which the integration over internal time and space argu-
ments is assumed and the self-energy matrix �̂� is itself in
general a complicated functional of ĜG. For the static field,
the resulting Green functionsG��,G��,GK, taken at t �
t1 � t2 do not depend on t, reflecting the fact that the
system is time translationally invariant as well.

The nonlinear conductivity is defined as the constant of
proportionality between the current and the electric field.
We will orient the field along the x axis and, hence,
Jxx�E� � �xx�E�E. In the Schwinger formalism, the di-
rect relationship [13] between G�� and the retarded and
advanced Green functions,

G��
p �t1; t2� � �

Z
dt3dt4GR

p�t1; t3�����t3; t4�GA
p�t4; t2�;

(6)

is obtained by formally solving the Dyson equation. In
Eq. (6), note the minus sign that is absent in the fermion
problem [13]. Analogous expressions hold for G�� (GK)
with ��� replaced with ��� (�K). In general, the self-
energy �̂� arises from the interaction U, �̂�U, and the
coupling to the dissipative bath �̂�d. However, treating
the interactions in the large-N (mean-field) limit, we
obtain that this approximation gives rise only to the
renormalization of the bare distance to the critical point
in the action [14],

m2 � ��
U
2

Z d2p

�2$�2
iGK�p; t; t�; (7)

so that a new Gaussian action with the excitation spec-
trum +�p� � p2 �m2 obtains. There is no contribution
from interactions to ��� (and �K) at this level, and the
corresponding Green functions are assessed by substitut-
ing �d�t3 � t4� into Eq. (6). To this end, we simplify the
notation by setting � equal to unity, so that in the fre-
quency space [14] ���

d �!� � �2i!e�j!j=�nB�!�,
�R
d �!� � �A�!�� � i!e�j!j=�, �K

d �!� � 2i!e�j!j=� �
�2nB�!� � 1�, with nB�!� the distribution function for
bosons. The upper frequency cutoff � is necessary only to
ensure the convergence of the zero-temperature parts of
the Fourier integrals �d�t� �

R
�d�!��d!=2$�e�i!t.

The equation of motion for the corresponding retarded
Green function,

@
@t1

GR
p�t1; t2� � +�p� e�Et1�GR

p�t1; t2� � ��t1 � t2�;

has a simple solution:

GR
p�t1; t2� � -�t1 � t2� exp

�
�
Z t2

t1

+�p� e�E�� d�
�
: (8)

In GA, the order of the time arguments is reversed in the
step function -�x�. Consequently, after Eqs. (6) and (8) are
combined, our problem is, in principle, solved. To make
contact with the case E � 0, we note that, in the absence
of a field, the frequency Fourier transform of Eq. (8)
reduces to the expected result �+�p� � i�!��1.
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When the field is nonzero, two distinct regimes emerge.
To obtain an estimate of the crossover field, we determine
at which value of the exponential in GR can be expanded.
We rewrite +�p� in the exponential of Eq. (8) as p2 �
2pxe�E��m2. Upon integrating the resultant exponen-
tial in Eq. (8), we find that the electric-field dependence
can be removed from the exponential provided that
pxe

�Et2 
 1. Since both momenta and time are inte-
grated over, this criterion is never satisfied. Hence, strictly
speaking, the electric-field effects are always nonpertur-
bative. However, an instructive way to estimate the cross-
over field is to note that t / 1=mz � 1=m2 and the
momentum scales as px / m. Consequently, we find that
e�E=m3 
 1 or equivalently, �e�E�2=3=m2 � Q
 1 de-
termines the small and large-field regimes. We will now
show that this crossover criterion can be derived in the dc
limit without making any approximation as to the mag-
nitude of the electric field.

To obtain the conductivity, we need first calculateG��.
We perform the integration in the exponent of Eq. (8) and
switch to the Wigner coordinates [10,11]: t � t1 � t2 and
u � �t1 � t2�=2. The Green function from which the cur-
rent is obtained reduces to

�iG��
p �t; t� �

Z 1

0
du

Z 2u

�2u
dtM�p; e�E; u; t�K�t�; (9)

where K�t� � �i�����t� and

M�p; e�E; u; t� � exp

�
�

�
2+�p�u� 2pxe�E�2u2 � t2=2�

�
�e�E�2

3
�u3 � 3ut2=2�

��
;

(10)

and the kernel K�t� is obtained as a result of the appro-
priate integration over ! with the cutoff � necessary to
regularize the T � 0 part. The result is

K�t� �
1

$
��2 � t2

���2 � t2�2

�
1

$

�
1

t2
�

$2T2

sinh2�$Tt�

�
� K0�t� � KT�t�; (11)

in which the second temperature-dependent part KT�t� �
$T2=3 as Tt
 1. Similarly, becauseGK � G�� �G��,
we can also express the inverse correlation length,

m2 � ��U
Z
p

Z 1

0
du

Z 2u

�2u
dtM�p; e�E; u; t�K�t�; (12)

in terms of the same functions appearing in G��.
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Our problem has been reduced then to the computation
of two types of coupled integrals in Eqs. (9) and (13). In
the T ! 0 limit, the main difficulty is to obtain the
cutoff-free expressions for m and J, since the physical
results should obey the universal scaling and correspond
to ��1 � 0. We have found the following procedure most
helpful. (i) We regularize the zero-temperature part [that
is, the integrals over the product M�p; e�E; u; t�K0�t�] by
adding and subtractingM�p; e�E; u; 0� andM�p; 0; u; 0� to
M�p; e�E; u; t�. In the current, as a result of integration
over p the part involving M�p; 0;u; 0� vanishes identi-
cally. In Eq. (12), a similar contribution gives rise to the
frequency and momentum dependent renormalizations of
�, as well as the term m2 ln�1=m2�, ensuring the validity
of the subsequently used logarithmic accuracy. (ii) In the
part containing M�p; e�E; u; 0� �M�p; 0; u; 0�, we per-
form straightforwardly the integration over t in K0�t� to
yield 1=�u$�. (iii) In the part containingM�p; e�E; u; t� �
M�p; e�E; u; 0�, we set simply ��1 � 0 as this part is
completely convergent. (iv) After that, in the parts con-
taining the above-mentioned differences, we introduce
the change of variables px ! px � �e�E�u=2�1� t2=
4u2�, and perform the Gaussian integration over momenta
px and py. Similar integration is performed in the part
containing KT . (v) Finally, we change variables to y �
t=2u and z � u�e�E�2=3. These transformations lead to the
appearance of the auxiliary functions,

M2�z� � exp

�
�

2m2z

�e�E�2=3

�
;

M1�z; y� � M2�z� expf�z
3�1=6� y2 � y4=2�g;

(13)

and ~KKT�z; y� � KT�t � 2z�e�E�4=3y�. The expressions de-
termining the current reduces now to quadrature:

J �
2e��e�E�

16$2 �h

�Z 1

0

dz
z

Z 1

0

dy

y2
f�y��M1�z; 0� �M1�z; y��

�
4$

�e�E�4=3

Z 1

0
z dz

Z 1

0
dy ~KKT�z; y�f�y�

�M1�z; y�
�
; (14)

with f�y� � �1� y2�. As will be seen below, the first term
in the brackets in Eq. (14) reflects the creation of carriers
by the field itself and is dominant at small T, giving rise
to the nonlinearity of the current. The second term de-
scribes temperature-dependent excitations. Within loga-
rithmic accuracy, we have
m2 ln�1=m2� � �� �e�E�2=3
�Z 1

0

dz

2z2

Z 1

0

dy

y2
�M1�z; 0� �M1�z; y�� �

Z 1

0

dz

2z2
�M2�z� �M1�z; 0��

�
2$

�e�E�4=3

Z 1

0
dz

Z 1

0
dy ~KKT�z; y�M1�z; y�

�
; (15)

where � is the renormalized distance to the quantum critical point.
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Consider now the quantum-disordered regime, in
which T is the smallest parameter. At low electric fields,
Q � �e�E�2=3=� 
 1, we expand Eqs. (14) and (15) in
powers of Q to obtain

m2 �
�

ln�1=��
�

�e�E�2

12��2= ln�1=���
�
$2

3

T2

�= ln�1=��
;

(16)

and

J �
4e2

h

�
$T2

9m4 �
�e�E�2

15$m6

�
E � ��E�E; Q
 1:

(17)

for the inverse correlation length and the nonlinear
current-voltage response. The first term matches identi-
cally with the value of the linear current response calcu-
lated earlier [15] for the quantum-disordered regime.
Most importantly, the current scales as the third power
of the voltage in the quantum-disordered regime. This
result clearly could not have been obtained within linear
response theory. This nonlinear response gives rise to a
nonzero conductivity (albeit nonlinear) even at T � 0 on
the putative insulating side of the transition. Such a term
arises entirely from the zero-temperature part of the
integrals in Eq. (14). As such a term will always be
present regardless of which universality class describes
the quantum phase transition, we predict that the T � 0
nonlinear conductivity will always remain nonzero on the
disordered side of the transition. This conclusion is borne
out experimentally by the series of measurements of
dI=dV in insulator-superconductor [3,4], quantum Hall
to insulator [5], and insulator to metal transitions [6].
Further, the form of the nonlinearity, E3, is nontrivial
and is also in agreement with the pronounced curvature in
the I � V curves on the insulating side of the dissipative
insulator-superconductor transition. To explore the large-
field regime from Eq. (14), we note that, when Q� 1,
e�E is the only parameter that determines m.
Anticipating the logarithmic smallness, we set M2�z� �
1, and after performing first the integral over z, we obtain

m2 �
��e�E�2=3

ln�1=�e�E�2=3�
; (18)

where

� �
62=3

12
�

	
2

3


Z 1

0

�
�1� 6y2 � 3y4�1=3 � f�y�

y2

�
dy

� 0:116 525: (19)

Here, as before, f�y� � 1� y2. In the same limit, the
current reduces to a single integral of the form

J �
2e�

4$2 �h

e�E
12

Z 1

0

dy

y2
f�y� ln�1� 6y2 � 3y4�

� 0:46
e2

h
E; Q� 1; (20)

which proves that dI=dV approaches a universal constant,
which of course depends on the universality class, as E!
027004-4
1. Hence, we have developed a formalism which is
capable of describing the experimental crossover from
the nonlinear to the linear regime at high field.

The crossover to the linear regime has a fundamental
origin. Because at mean field � � 1=2 and z � 2, we can
rewrite Eq. (18) as m2 / 1=�‘2E ln‘E�. Hence, at large
fields, the correlation length is cut off by the electric-
field length scale, to logarithmic accuracy. That is, the
only length scale in the large-field limit is ‘E. As it is
the product m2‘2E that enters the nonlinear conductivity,
the electric-field dependence naturally drops out and the
conductivity approaches a universal constant. In the op-
posite regime, the correlation length and the electric-field
length scale are distinct as Eq. (16) indicates. The non-
linearity arises entirely from the quantum fluctuations on
the length scale �. In the nonlinear regime, it is tempting
to rewrite the current, Eq. (17), in terms of an effective
temperature, T2

eff � T2 � 0:06�e�E=m�2. The current then
simplifies to

J �
4$e2

9h
T2
eff

m4 E: (21)

For electrons localized in the band tails of semiconduc-
tors, the concept of an electric-field-dependent effective
temperature has been used extensively [16,17]. Electrons
moving against the electric field are accelerated on a
length scale set by the localization length, while in the
quantum-disordered regime the analogous role is played
by the correlation length.
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