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Einselection in Action: Decoherence and Pointer States in Open Quantum Dots

D. K. Ferry, R. Akis, and J. P. Bird
Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University,

Tempe, Arizona 85287-5706, USA
(Received 5 January 2004; published 7 July 2004)
026803-1
Recent work on the role of decoherence has suggested that the decay of quantum effects is governed
by a discrete set of pointer states, which affect the quantum to classical correspondence. We show that
the conductance oscillations exhibited by open quantum dots are governed by a discrete set of stable
quantum states which have the properties of the pointer states, and which are closely related to trapped
classical orbits in the open dot.
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FIG. 1 (color online). (a) A perspective view of the confining
potential which creates the ballistic quantum dot. The two
narrow portions are the quantum point contacts, which are
open and pass multiple transverse modes. The central region
has a typical dimension that ranges from 0.2 to 1:0 �m. The
external environment is an extended quasi–two-dimensional
electron gas to which contacts are applied in order to measure
the voltage across, and the current through, the quantum dot.
(b) A scanning electron micrograph of an actual set of gates.
The light colored area is gold metallization to which the
precise measurement on a quantum system with a classi-
cal measuring apparatus.

voltage bias is applied. The dark area is the surface of the
semiconductor layers.
The manner in which quantum states of a system
evolve into classical states has been a point of significant
discussion in quantum measurement theory for quite
some time [1]. In particular, open quantum systems in-
teract with an environment, which may be a bath or
reservoir, but also may be the measurement system itself,
whose output is presumed to be classical in nature. The
manner in which the quantum properties of the system
are revealed in the classical results of the measurement,
as well as the manner in which these quantum properties
evolve into intrinsic classical properties, has been the
focus of investigation since the formulation of quantum
theory. One interpretation, which explicitly includes the
coupled systems, is that of decoherence [2]. Decoherence
is thought to be an important part of the measurement
process, especially in selecting the classical results, that
is, in passing from the quantum states to the measured
classical states of a system [3]. However, the description
(and interpretation) of the decoherence process has varied
widely, but the key is the interaction of the system upon
the environment, as well as the interaction of the environ-
ment upon the system. Zurek has proposed that the inter-
action of the system on the environment leads to a
preferred, discrete set of quantum states, known as
pointer states, which remain robust, as their superposi-
tion with other states, and among themselves, is reduced
by the decoherence process [4]. This decoherence-
induced selection of the preferred pointer states was
termed einselection [3]. Recently, it has been argued
that the pointer states must be a continuous set of states
[5]. In addition to the pointer states, there exists a sea of
states that are heavily damped by the decoherence pro-
cess. If the pointer states constitute a discrete set, then
their robustness with respect to decoherence should make
it possible to detect them in a measurement process
among all the heavily damped states. However, if the
pointer states constitute a continuous set, as recently
argued in Ref. [5], then not only would their detection
in measurement be impossible, but so would any remotely
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In this report, we discuss a physical system in which we
believe the properties of pointer states are observable.
Here, we describe the key features of measurements on
this system and show how a discrete set of (pointer) states
is selected, which provide a measurable conduction oscil-
lation, and which are orthogonal to the majority of quan-
tum states in the system. This system is an open quantum
dot, in which the coupling to the environment is mediated
by a pair of quantum point contacts [6]. In practice, these
dots are realized by applying depletion potentials to litho-
graphically defined gates, which provide lateral confine-
ment of a quasi-two-dimensional electron gas formed at
the interface of a GaAs/AlGaAs heterostructure (Fig. 1).
This results in the confinement of electrons to a submi-
cron sized ballistic cavity that is coupled to its environ-
ment through the quantum point contacts. Conductance
through this dot is governed by the transmission and
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reflection of waves originating in the external environ-
ment. Variation of either a normal magnetic field, or the
confining potential of the quantum dot itself (by means of
gate voltages), produces quasiperiodic conductance oscil-
lations. This coupling of the dot states to the environment
is known to produce decoherence within the dot [7,8],
which washes out most quantum structure, but a set of
states remains robust against this process. Hence, these
semiconductor quantum dots are ideally suited for study-
ing the influence of the environment on the energy level
spectrum. It is found that the conductance oscillations in
these dots arise from a discrete set of stable quantum
states, which are only weakly coupled to the environment.
These states recur in a nearly periodic manner in the
energy spectrum of the dot [9,10]. Moreover, these states
are strongly correlated to regular classical trajectories in
the dot, which lie on an isolated Kolmogorov-Arnold-
Moser (KAM) island in the mixed phase space [11]. The
spectral width of these states is relatively independent of
the environmental coupling strength [12]. Consequently,
it seems that these robust states may well be the pointer
states in this quantum system.

We have studied a great many such gate-defined quan-
tum dots, with lateral size varying from 0.2 to > 1:0 �m,
and the results found are quite similar in behavior. As the
gate voltage that is used to define the device confining
potential is made more negative, the dot is reduced in
size and the various energy levels are pushed up through
the Fermi energy. This leads to a series of conductance
oscillations, which ride on top of a monotonic back-
ground. These oscillations become stronger in high
quality material and exhibit one, or perhaps two, domi-
nant frequencies that are dot-size dependent. The oscil-
lations disappear for temperatures above a few degrees
kelvin. These oscillations should not be confused
with universal conductance fluctuations (UCF), which
are aperiodic and typically arise in mesoscopic systems
due to impurity induced disorder [13]. We have studied
these oscillations in surface depletion gate-defined
dots [6], etched isolation in-plane gated dots [14], and
in etch-defined dots [15], so that the results do not
depend upon the relative softness of the potential or the
material in which the dot is fabricated. In results in
which the magnetic field is varied, the experimental
oscillations are characterized by a single dominant
frequency, and quantum simulations, as well as clas-
sical simulations, yield essentially this same frequency
[16], and this frequency is found to scale with the size of
the dot [17]. When the gate voltage is varied, these oscil-
lations are also observed, although the actual frequency
depends upon both the dot size and the lever arm from
the gate voltage to the actual Fermi level motion within
the dot [9]. The oscillations often are observed over the
entire range of gate voltage and persist to conductance
values of 15 e2=h, which represents a very open dot.
Again, the experimental results and quantum simulations
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(discussed below) yield the same dominant frequency in
the dots.

The nature of the quantum states has been investigated
through simulation of electron transport through the dots,
and the connection of these simulations to atomic force
microscope measurements of scarred wave functions in
these billiards has recently been demonstrated [18]. These
simulations begin by computing the three-dimensional,
self-consistent potential profile of the open dot at each
gate voltage, from which the conductance is computed
using a lattice discretization of the single-particle
Schrödinger equation in the effective mass approximation
[16]. Here, the open dot is broken into a set of slices across
which we translate using a stable, iterative scattering
matrix approach. In this way, we can obtain the conduc-
tance from the Landauer formula. Finite temperature is
included by averaging the conductance traces over an
energy range of kBT with the Fermi function. From these
simulations, conductance oscillations are found which
agree well with those observed in experiment. In particu-
lar, both the number of Fourier peaks which occur in the
simulation and their amplitude agree well with the ex-
perimental results. From studies of the wave function
itself, we find that these peaks correspond to the frequen-
cies at which specific sets of scarred wave functions recur
in the dot [16,19]. Decomposition of these scarred wave
functions show that they arise from a single eigenstate of
the closed dot [20,21]. These particular states are quite
stable as the leads are opened to allow stronger coupling
to the environment, and in fact seem to be insensitive to
this coupling, which agrees with experiments which have
demonstrated that the dominant frequency components of
the conductance oscillations are extremely stable to varia-
tion of the coupling strength over a wide range.

Indeed, we have even observed evidence for these
regular oscillations in dots whose leads support as many
as 30 propagating modes [22]. In Fig. 2, we show the
density of states within a 0:3 �m dot. This is dominated
by conductance resonances that move as the bias is varied,
which changes the coupling to the environment as well as
the dot size. It may be seen that the linewidth does not
change significantly as the environmental coupling is
increased, even though the resonance is shifted due to
the change in the dot size. Indeed, nearby states are
completely damped by the environment and uncoupled
to the stable state, even though they may be separated by
an energy much less than the linewidth (approximately
21�eV in the figure). For example, the resonance indi-
cated by the arrow in this figure has another closed-dot
eigenstate nearby, which is completely damped by its
interaction with the environment, so no peak appears in
this figure. The wave function of the resonance is shown
in inset (b), while the nearby state is shown in inset (a).

We illustrate the lack of coupling to nearby states
further in Fig. 3. Here, we expand a portion of Fig. 2,
and the darkness of the image relates to the amplitude of
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FIG. 3 (color online). An enlargement of a portion of Fig. 1,
to show the lack of interaction between the stable wave func-
tions and nearby states. The dark regions are those of lower
amplitude in the density of states. The filled (color) squares are
the stable resonance indicated by the arrow in Fig. 1 and the
wave function of inset (b) to that figure. The black circles are
nearby states, which are completely damped by the interaction
with the environment.

FIG. 2 (color online). The density-of-states peaks, corre-
sponding to conductance resonances, in the quantum dot. The
peaks correspond to the stable wave functions in the dot as the
gate voltage and Fermi energy are varied. As the gate voltage is
varied, the dot becomes more open, but the stable resonances
show no increase in width as the coupling to the environment is
increased. The arrow indicates a resonance, whose wave func-
tion is indicated by inset (b), for which the state of inset (a) is
quite near, but is completely damped. The linewidth is about
21 �eV.
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the density of states. The filled squares are the robust
conduction state of Fig. 2(b), while the solid circles are
nearby states that are completely damped by their inter-
action with the environment. While one of these actually
crosses the resonant state, there is no interaction as the
two wave functions are orthogonal, as may be seen from
the wave functions in the insets to Fig. 2. This orthogon-
ality between the pointer state and the nearby state is
evident, and presumed to result from the einselection
process, where the density matrix becomes diagonal in
the pointer states. Decoherence of the other states arises
from their strong interaction with the environment, and
any excitation of these states results in amplitude leakage
to the environment. In a closed system, these background
states would also be excited, but they are damped in the
open system. We interpret these as contributing to the
background conductance, which clearly increases with
the degree of opening in the quantum dots, which is
further discussed below.

In general, the classical dynamics of these open dots
exhibits a mixed phase space behavior [23]. In such
studies, a Poincaré section taken normal to the plane of
the dot, and passing through the point contacts, exhibits
the characteristic sea of chaos and a stable KAM island of
orbits which correlate well with the observed gate voltage
dependence and with the scarred wave functions [11]. We
have argued that the orbits on the KAM island are iso-
lated from the leads and must be coupled to the environ-
ment by phase space tunneling [11]. The states on the
KAM island exhibit exactly the same periodicity as the
stable quantum states discussed above, and these clearly
correspond to one another as expected from the einselec-
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tion theory [2]. Similar observations of the persistence of
special states, as the quantum dot is opened, and a strong
correlation between these quantum states and classical
results, has been seen by Nazmitdinov et al. [24] and by
Bäcker et al.[21]. In fact, we would argue that this result is
expected from the einselection theory. Zurek has sug-
gested that ‘‘einselected states are predictable: they pre-
serve correlations and hence are effectively classical’’ [2].
It is this process that takes the quantum states and then
correlates them well with what become the classical
orbits. On the other hand, the KAM islands are sur-
rounded by a ‘‘sea of chaos,’’ which is felt to derive
from the background states which are strongly coupled
to the environment. More particularly, the occupation of
these latter states is lost to the environment as the dot is
opened, as they no longer possess any amplitude local-
ized within the dot. The strong decoherence of these states
leads to the destruction of their quantum nature and their
contribution to the chaotic states yielding the background
conductance in the dot. The need to tunnel to the KAM
island correlates to the quantum transport process for the
stable states, and the resultant Fano lineshape is observed
as the conductance oscillation [20]. As discussed above,
we recall that, while we measure currents, we physically
are measuring the transmission of waves propagating
from the environment to the dot, and the dot states
026803-3
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modify the reflection and transmission of these waves.
Thus, the properties of the dot affect the environment
through this modification of the transmission coefficients.

In summary, we find that the conductance oscillations
in open quantum dots are related to a set of eigenstates,
whose stability is consistent with einselection; i.e., the
selection of a set of discrete pointer states which are quite
stable as the coupling to the environment is increased.
The observed pointer states have a narrow line width, and
their superposition with nearby quantum states, well
coupled to the environment, is heavily damped by deco-
herence. Moreover, the scarred wave functions of the
pointer states strongly resemble the trajectories found in
classical simulations of the same self-consistent poten-
tial, which suggests these are the route through which the
quantum to classical transition occurs.
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