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We measured zirconium tungstate’s elastic constants Cij. This compound shows relatively soft, nearly
isotropic elastic constants with normal Poisson ratios and no approach to Born instability. ZrW2O8

shows normal ambient-temperature elastic constants Cij, but remarkable dCij=dT that show dominant
low-frequency acoustic-vibration modes. From the bulk modulus, we estimated the total ambient-
temperature thermodynamic Grüneisen parameter as � � �1:2. The dB=dT slope gives a Grüneisen
parameter � � �7. The 300–0 K bulk-modulus increase (40%) seems unprecedented and breaks
Birch’s law of corresponding states.
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Since the discovery in 1968 that zirconium-tungstate
contracts when heated [1], much research ensued,
both measurements and theories [2–7]. Zirconium
tungstate represents perhaps the paradigm negative-
thermal-expansion material: cubic crystal structure
(thus, isotropic contraction), continued shrinking when
heated over a wide temperature range (0–1050 K), a
nearly constant thermal-expansivity coefficient 
 �
�1=V��dV=dT�P, and (for oxides) large 
.

Negative thermal expansion is attributed to lattice ge-
ometry: a large (44-atom) unit cell, interconnected Zr-O
octahedra and W-O tetrahedra [8]. Zirconium tungstate’s
elastic constants Cij assume importance for several rea-
sons: (i) The Cij reflect interatomic bonds, thus a check on
interatomic potentials and assumptions about ionicity
covalency. (ii) The bulk modulus B � �C11 � 2C12�=3
by high-pressure neutron diffraction [9] differs enor-
mously from a theoretical estimate [10]. (iii) Some studies
conclude that negative thermal expansion of a network
structure implies a negative Poisson ratio [6]. (iv)
Reported Debye or Einstein temperatures vary widely,
and the Cij provide a good estimate of these. (v) An
accurate bulk modulus B gives a good estimate of the
total thermodynamic Grüneisen parameter. (vi) The Cij
TABLE I. Values of the monocrystal Cij and
constants: bulk modulus B, Young modulus E, s
temperature calculated from the Cij.

T (K) C11 (GPa) C12 (GPa) C44 (GPa) B

300 128.4 47.5 27.4
0 161.8 75.5 29.4 1
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provide a check on neutron-diffraction Born–von
Karman force constants. (vii) From the Cij, we can see
whether any of the Born stability criteria accompany
negative thermal expansion. (viii) The elastic-constant
temperature derivatives dCij=dT relate directly to the
Grüneisen parameter and to the equation of state.

Monocrystals were made using a nonequilibrium tech-
nique described elsewhere [2]. The specimen consisted of
a (100)-oriented rectangular parallelepiped measuring
0:10 cm � 0:16 cm � 0:21 cm. From mass and volume,
we estimated a 5:059-g=cm3 mass density, within about
0:5% of the x-ray density. For measurements, we used
resonant-ultrasound spectroscopy [11].

For the Cij, we found the results summarized in Table I.
These give a (110) �110� shear modulus C0 � �C11 �
C12�=2 � 40:5 GPa, a bulk modulus B � �C11 �
2C12�=3 � 74:5 GPa, and a Zener elastic anisotropy A �
C44=C0 � 0:677. The 0:43% rms frequency measurement
uncertainty means Cij uncertainties of about 1%.

Figure 2 shows our results expressed as ratios
Cij�T�=Cij (300 K). Instead of C11, C12, and C44, we
show the more physical Zener elastic constants C0 �
�C11 � C12�=2, C44, and �C11 � 2C12�=3, with the latter
being the bulk modulus B. Because zirconium tungstate
the average-over-direction effective elastic
hear modulus G, Poisson ratio �, and Debye

(GPa) E (GPa) G (GPa) � �D

74.5 88.3 33.9 0.303 (321)
04.3 98.8 36.8 0.342 333
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FIG. 1. Blackman diagram showing points for ZrW2O8 and
seventeen other oxides. We see that ZrW2O8 looks normal.
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shows small elastic anisotropy, C0 � C44, for convenience
we sometimes also invoke the shear modulus in Voigt’s
approximation, G � �2C0 � 3C44�=5. Table I gives the
monocrystal Cij, the average-over-direction effective
elastic constants, and the Debye temperature �D calcu-
lated from the Cij.

Compared with 17 other oxides [12], zirconium tung-
state is relatively soft. Its bulk modulus B equals 53% of
the average value. The effective shear modulus G is 44%
of the average. (Here, we calculated G by Kröner’s aver-
aging method [13].) This relative softness reflects the
crystal structure and the interatomic bonding. One view
of zirconium tungstate’s negative thermal expansion is
that rigid ZrO6 octahedra rotate toward or away from
alignment with the unit-cell axes, altering the volume
[14]. The softness to rotation appears in the bulk modulus,
and more so in the shear modulus.

Our bulk-modulus result, B � 74:5 GPa, compares
reasonably well with a high-pressure powder-specimen
neutron-diffraction study: B � 72:5 GPa [9]. Both mea-
surements refute a much-lower theoretical estimate [10].
A theoretical lattice-dynamics study [5] gave B �
88:4 GPa. This calculation included both ionic and co-
valent interatomic potentials. Below, we describe that our
measured Cij suggest a weak covalent component.

To characterize crystal elastic anisotropy, one usually
invokes Zener’s anisotropy definition [15]:

A � 2C44=�C11 � C12�: (1)

However, for materials with A less than unity (the present
case), a better definition arises, as emphasized by Chung
and Buessem [16]. These authors suggested

A
 � �GV �GR�=�GV �GR�: (2)

Here, GV and GR denote effective shear moduli calculated
from the Cij using Voigt or Reuss methods. For isotropic
materials, A
 � 0. For a high-anisotropy material such as
sodium, A
 � 40. For zirconium tungstate, A
 � 0:02,
that is, nearly isotropic. With NiO and BaTiO3 as excep-
tions, none of the oxides shown in Fig. 1 possess strong
elastic anisotropy, and both exceptions are metastable.

Some studies [6] concluded that zirconium tungstate,
because of its linkage crystal structure, may possess a
negative Poisson ratio:

�ij � ��Sij=Sii�: (3)

Here Sij denotes the contracted Sijkltensor inverse of the
Cijkl. Because the material shows near elastic isotropy, we
can consider the average-over-direction Poisson ratio,
which relates to the bulk modulus B and effective shear
modulus G:

� � �1=2���3B� 2G�=�3B�G��: (4)

The effective Poisson ratio equals 0.30, not only posi-
tive but also a value typifying many positive-thermal-
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expansion materials. Thus, although many linkage-
structure materials show negative Poisson ratios, zirco-
nium tungstate does not.

To learn something about the interatomic bonding, we
use a Blackman diagram [17,18], Fig. 1. In such a diagram
showing reduced Cij, materials with similar bonding
cluster. Figure 1 shows that zirconium tungstate falls
among the oxides, on the low C44=C11 side, away from
covalent compounds, which fall more in the center [18].
This location suggests a strong ionic contribution, and a
weaker covalent contribution. Some lattice-dynamics cal-
culations included both contributions [5], which would
predict a stiffer material. Also, some studies suggested
that negative thermal expansion requires high covalency
[19]. If so, this covalency fails to affect the elastic con-
stants. The Poisson ratio (0.30), being much higher than
the � 0:20 covalent limit [20], also suggests strong ion-
icity. On bonding, finally we note the small-moderate
departure from the Cauchy condition C12 � C44, a depar-
ture usually taken to indicate noncentral-force bonding.
Again ZrW2O8 behaves similar to a typical oxide.

Some authors suggested elastic instabilities [5]. In
Fig. 1, the Born instability conditions occur as lines
C12=C11 � 1 and C44=C11 � 0. On this diagram, points
move only slightly in response to changes in composition,
temperature, and pressure. Thus, the zirconium-tungstate
point occurs well away from mechanical instability.

From the Cij, we can calculate an elastic Debye tem-
perature �. At zero temperature �elastic equals �specific-heat

[21]. To calculate �, we use the relationship

� � �h=k��3=4�Va�
1=3vm: (5)

Here, h and k take their usual meanings, Va denotes
025502-2
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FIG. 2. Zirconium tungstate’s normalized low-temperature
elastic constants: bulk modulus B, C11, C44. Curves represent
an Einstein-oscillator function. The bulk-modulus increase
may be the largest ever reported. The near linearity to such
low temperatures strongly suggests a low-frequency Einstein
mode.
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atomic volume, and vm denotes mean sound velocity,
which we calculated from the Cij using the Christoffel
equations. For T � 0 K, we estimate � � 333 � 5 K.
Our result differs 7% from a recent specific-heat result:
� � 311 K [22].

Using the bulk modulus B, we can calculate the quin-
tessential anharmonic-property parameter, the Grüneisen
parameter:

� � Bs
V=Cp: (6)

Here 
 denotes volume thermal expansivity, V volume,
and Cp heat capacity. For these properties we took

 � �26:4 � 10�6 K�1, V�unit cell� � 767:22 #A3, Cp �
207 JK�1 mol�1. Substitution gives the total thermody-
namic (effective, average-over-mode) Grüneisen parame-
ter � � �1:2, consistent with several previous reports
[3,22].

For a typical oxide such as CaO, in the temperature
region 300 to 100 K, cooling increases the shear modulus
about 5% and the bulk modulus about 4% [23].
From quasiharmonic-model thermodynamics, the bulk-
modulus temperature derivative has the form [24]

�@BS=@T�P � ��S
BS � ���� 1�
BS: (7)

Here S denotes entropy, P pressure, � the second
Grüneisen parameter, 
 the thermal expansivity
�1=V��@V=@T�P, and � the usual (first) Grüneisen
parameter. For typical materials where � ranges from
1 to 3, the derivative is usually negative. Indeed the
measured @B=@T provides a way to estimate �. For
zirconium tungstate, � is negative and 
 is negative.
Thus, from Eq. (7) one expects a negative @B=@T.
Deriving an expression for the shear-modulus tempera-
ture dependence requires more assumptions. As an ex-
ample, using Born’s central-force near-neighbor-only
face-centered-cubic model gives [25]

�@G=@T�P � �9=28��@B=@T�P: (8)

Taking a typical Poisson ratio, � � 1=3, then G=B � 3=8,
and we obtain

�B=G��@G=@T��@B=@T� � 6=7: (9)

So, approximately, in Born’s model the relative
shear-modulus change with temperature equals the rela-
tive bulk-modulus change. Born’s model may apply fairly
well to zirconium tungstate because central-interatomic-
force potentials enjoyed some success [5] and because the
ZrO6 octahedra occupy fcc lattice positions [26].

Figure 2 presents three major surprises: (i) All the
elastic constants stiffen during cooling, against the ex-
pectation that they should soften because the volume
increases and the bulk modulus varies with volume as B /
V�4=3. (ii) The shear-modulus increase agrees with that of
a typical oxide. (iii) The bulk modulus changes differ-
ently from the shear modulus. Indeed the bulk modulus
025502-3
increases enormously. The 40% increase in the bulk
modulus is unprecedented [27]. The increase breaks
Birch’s law of corresponding states: The bulk modulus
depends on volume, not on how one changes volume —by
temperature, pressure, composition, or phase transforma-
tion [28,29]. The Birch-law breakage provides strong
evidence that the material’s internal state changes during
cooling. Another surprise is the near linearity to such low
temperatures, or the low temperature at which the elastic
constants begin to reflect strongly the zero-point energy.
Also, we see unusual behavior in the Zener elastic anisot-
ropy: A � C44=C

0 is essentially temperature invariant.
Curiously, the bulk modulus extrapolates to zero near
the material’s decomposition temperature, 1050 K.

To the measurements in Fig. 2, we fit an expression
based on the assumption that elastic stiffness decreases
linearly with the thermal-oscillator-energy increase [30]:

C�T� � C0 � s=�et=T � 1�: (10)

Here, C0 denotes the zero-temperature elastic stiffness
and t relates to the average Einstein temperature.
Originally an adjustable parameter, in a quasiharmonic
Einstein-oscillator model, s becomes [31]

s � Ch � C0 � 3kt���� 1�=Va: (11)

Here Ch denotes the harmonic zero-temperature elastic
constant obtained by linear extrapolation from high tem-
peratures, k is the Boltzmann constant, � is the Grüneisen
parameter, and Va is the atomic volume. The high-
temperature slope follows as
025502-3



TABLE II. Einstein temperature calculated by fitting Eq. (10)
to the Cij�T�.

Cij C11 C12 C44 C0 B

�E (K) 26 23 17 34 25
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dC=dT � �3k���� 1�=Va: (12)

Solving this relationship for � and taking the negative
root gives � � �7:0, which differs sharply from the
ambient-temperature value of � � �1:2, and heads to-
ward the large negative low-temperature values reported
from thermal-expansion and specific-heat measurements
[3,22].

The results of fitting Eq. (10) to the Cij, and taking t to
be an Einstein temperature �E are summarized in
Table II. For zirconium tungstate t � 25 K � 0:07�D,
enormously lower than expected.

The low values obtained for �E reflect a dominant low-
frequency acoustic-vibration mode. The lowest value of
�E appears for C44, the (100) �0kl� shear mode, and the
highest �E corresponds to C0 � �C11 � C12�=2, the (110)
�110� shear mode. However, �E shows remarkably low
values for all modes, shear and dilational. These results
agree with and confirm previous heat-capacity and
phonon-density-of-states studies, which found low-
frequency Einstein-type vibration modes.

Despite its peculiar anharmonic properties, zirconium
tungstate possesses monocrystal elastic constants (har-
monic properties) that present no surprises. Compared
with other oxides, it is slightly soft, nearly isotropic,
mechanically stable, and shows normal Poisson ratios.
A Blackman diagram suggests strong ionic bonding. Its
elastic-constant temperature derivatives (anharmonic
properties) behave remarkably, perhaps uniquely, in both
the magnitudes and the signs of the various dCij=dT.
At a fundamental level, the Cij-T behavior must relate
to the remarkable negative-thermal-expansion behavior
ZrW2O8; both depend on the Grüneisen parameter �.

This research proceeded under the auspices of the
National Science Foundation, the State of Florida, and
the U.S. Department of Energy. J. Van Duijn also thanks
DOE Grant No. DE-FG02-02ER45983 for support of this
research.
02550
[1] C. Martinek and F. Hummel, J. Am. Ceram. Soc. 51, 227
(1968).
2-4
[2] A. P. Ramirez and G. R. Kowach, Phys. Rev. Lett. 80, 22
(1998).

[3] G. Ernst, C. Broholm, G. Kowach, and A. Ramirez,
Nature (London) 396, 147 (1998).

[4] T. Ravindran, A. Arora, and T. Mary, Phys. Rev. B 67,
064301 (2003).

[5] R. Mittal and S. Chaplot, Phys. Rev. B 60, 7234 (1999).
[6] D. Cao, F. Bridges, and A. Ramirez, Phys. Rev. B 68,

014303 (2003).
[7] J. Evans, W. David, and A. Sleight, Acta Crystallogr.

Sect. B 55, 333 (1999).
[8] A. Sleight, Curr. Opin. Solid State Mater. Sci. 3, 128

(1998).
[9] J. Evans et al., Science 275, 61 (1997).

[10] A. Pryde et al., J. Phys. Condens. Matter 8, 10 973 (1996);
N . Allan et al., Phys. Chem. Phys. 2, 1099 (2000)
challenged the validity of the interatomic potential
used in this study.

[11] A. Migliori and J. Sarrao, Resonant Ultrasound
Spectroscopy (Wiley-Interscience, New York, 1997).

[12] H. Ledbetter and S. Kim, in Handbook of Elastic
Properties of Solids, Liquids, and Gases (Academic,
San Diego, 2001), Vol. II, p. 65.
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