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Clarification of the Bootstrap Percolation Paradox
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We study the onset of the bootstrap percolation transition as a model of generalized dynamical arrest.
Our results apply to two dimensions, but there is no significant barrier to extending them to higher
dimensionality. We develop a new importance-sampling procedure in simulation, based on rare events
around ‘‘holes’’, that enables us to access bootstrap lengths beyond those previously studied. By framing
a new theory in terms of paths or processes that lead to emptying of the lattice we are able to develop
systematic corrections to the existing theory and compare them to simulations. Thereby, for the first
time in the literature, it is possible to obtain credible comparisons between theory and simulation in the
accessible density range.
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the most advanced simulations. A most interesting out- are incredibly large (e.g., �	 1047 at � � 0:995 [19]).
The bootstrap percolation problem [1] has attracted
considerable interest from a variety of scientific commun-
ities. In essence it (or its obvious variants) is a method to
analyze the dynamics of a system of highly coupled units,
each of which has a state that depends on those of its close
neighbors. Such units have been considered particles,
processors, or elements of a growing population. Units
that become active in the underlying dynamics are simply
removed in the bootstrap. The ensemble can undergo a
transition to an ‘‘arrested’’ state in which all dynamics is
quenched, and this is (after bootstrap removal of units)
reflected in a transition from an empty to partially filled
lattice. This arrest is found to be driven by a long length
scale. The change of state of one unit becomes increas-
ingly difficult near arrest, requiring a long sequential
string of favorable changes in its surrounding units.
Thereby a long length is slaved to a long, relaxational
time scale.

The simplicity of bootstrap concepts means that boot-
strap percolation plays a canonical role in the conceptual
framework of the dynamical arrest transition, ‘‘glassifi-
cation’’ [2–5] and in arenas as diverse as processor arrays
[6] and crack propagation [7] among others.

We study two types of ‘‘dynamics,’’ the well-known
‘‘bootstrap model’’ itself [1,8–11] and the modified boot-
strap [7,12]. In the former, particles are removed if they
are surrounded by c or less neighbors, and in the latter
they are removed if any two of its vacant nearest neigh-
bors are also second neighbors to each other. The (random
bootstrap) transition occurs as a function of c, system size
L, and initial particle density � and occurs when half of
the prepared initial states are empty after removal of all
movable particles.

In this Letter we introduce both new simulation algo-
rithms and theoretical approaches that qualitatively
change the regimes that may be explored. The theory is
now relevant to physically accessible length scales and,
using only a personal computer, the simulations can be
extended beyond the largest scales currently accessible in
0031-9007=04=93(2)=025501(4)$22.50 
come, perhaps of topical interest [13], is that we are able
to elucidate the origin of disagreements between simula-
tion [7,14] and theory [15] for the bootstrap models and
show how the two can work together more closely in
future developments. Currently our calculations are de-
tailed and specific to these models, but we consider they
contain the kernel of generality required to signpost the
path to future developments in the whole arena of dy-
namical arrest.

The bootstrap-type problems mentioned above fall into
two broad ‘‘universality’’ classes of arrest transition [1].
The first type is a continuous or ‘‘critical’’ point transition
in which progressively more particles lose motion, lead-
ing to growing arrested domains whose typical size di-
verges with a power law. The second type of transition (of
interest to us here) is more reminiscent of a first-order
transition. There, dynamically slowed domains grow near
arrest according to an essential singularity. Mobilization
of these domains is dependent on rare events (we call
these ‘‘connected holes’’ [16]) involving specific units
that can nucleate motion on this large length. As will
become clear, these nuclei become highly dilute near the
transition, the typical distance between them being the
diverging bootstrap length.

For such transitions the following conclusions have
been drawn by the community. For c � d (the dimension)
it is believed that the bootstrap length � diverges accord-
ing to an essential singularity � � expo�d�1��A=�1� ���,
where expod is the exponential function iterated d times
[17,18]. For the two dimensional square lattice
c � 2, theoretical calculations [15] have resulted in
some elegant asymptotic results: lim�!1

�!1
2�1� �� log� �

A, where A � 	2=9 and 	2=3 for the conventional and the
modified bootstrap, respectively.

On the other hand, all attempts to obtain this asymp-
totic result by simulation have so far failed, including
extensive calculations up to L � 128 000, leading to
speculation that it may be relevant to particle densities
very close to unity and, consequently, system sizes that
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FIG. 2. Bootstrap model. The (
) points represent the total
hole density (the dotted line is a guide to the eye) and can be
compared with the results for 1=�2 (�) for � > 100 [1,21]. The
symmetrically growing squares (�) are compared with the
asymptotic result � � exp��	2=9�1� ��� (lower solid line)
[15]. Also shown are results for diffusing squares (4) and
small-asymmetry rectangles (5).

FIG. 1. Modified bootstrap model. The (
) points represent
the total hole density (the dotted line is a guide to the eye). The
symmetrically growing squares (�) are compared with the
asymptotic result (lower solid line) [15]. Also shown are results
for diffusing squares (4) and small-asymmetry rectangles (5);
in these cases, the lines through the points represent our
theoretical results.
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Such lengths would be far beyond what will ever be
possible, or indeed of interest, for Physics to explore.

Buried within this problem, however, a more troubling
implication emerges [1,13,15] that simulations and theory
may be relevant to such different scales that there can be
little useful dialogue between them. The point is that
many of the interesting arenas of application involve a
large, but finite number of units, and the present theory
does not seem helpful there [1].We show that this need not
be the case. When the problem is properly placed in the
context of general knowledge in the physics community,
the existing theory is useful, elegant, and worth develop-
ing further, and at the same time, the simulations were
correct and worthwhile.

We show that the modified theory and simulation can
be brought into agreement over all reasonable length
scales of interest to physics. Our results are exact also
in the true asymptotic regime [15], but this is out of the
reach of simulations and experiments alike, and physics
will likely not be interested in the outcome. We identify
holes on the lattice as spaces (vacancies) into which
particles can move [16]. We here note that some concept
of ‘‘hole’’ appeared in the literature before [20]. In our
case, we identify these holes as either ‘‘connected’’ or
caged (disconnected) according to whether the lattice can
(or cannot) be vacated by sequentially removing particles
beginning from that hole. The relationship to conven-
tional (random) bootstrap simulations (described above)
is clear; a given system size and density must contain at
least one connected hole for it to be vacated by random
bootstrapping processes. Thus, the bootstrap correlation
length � is related to the connected hole density � via
� � 1=�2 (see Fig. 2). The bootstrap length is therefore
the average distance between connected holes that be-
come increasingly rare near arrest. The device of holes
allows us to focus on the key ‘‘order’’ parameter, rather
than the very populous, but irrelevant particles and va-
cancies [16].

The details will be presented elsewhere, so here we
present only some results for the case d � 2. In the
simulations we begin by creating a hole with the appro-
priate weight and then populate (‘‘grow’’) the configura-
tion with particles and vacancies around this site,
checking at each stage to see if that hole is connected,
or trapped (i.e., a rattler [16]) by identifying cages at that
length. In practice we need to bootstrap only up to the
typical cage size lc which grows as log�1� ��= log���,
much more slowly than the bootstrap length �.
Thereafter, we can be sure the process will continue
and there is no need to check explicitly since the hole
will be connected with certainty. This approach has sig-
nificant practical advantages since it permits us to sample
directly only the important rare events (connected holes)
rather than prepare and study very large systems. Thus,
the results produced here require only a few hours of time
on a personal computer. In Figs. 1 and 2 show the results
for the total connected hole density in the modified and
025501-2
the conventional bootstrap model, and these agree, where
comparisons are available, with the most extensive con-
ventional simulations. For example, the (�) points in the
uppermost curve of Fig. 2 represent the hole density
implied by the results in [1,21] (system size L �
128 000), while the (
) points on that same curve are
from our importance-sampling procedure discussed
above (we have simulated up to an effective system size
of L � 200 000). An additional advantage in the simula-
tion approach is that we can make direct contact with
theory.

Previous theoretical calculations [2,12,15] approxi-
mate the process of simultaneous removal of particles
on increasingly large boundary contours until reaching
one that is entirely occupied by particles and, therefore,
025501-2
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immovable. The theory presented here is developed by
finding the most important ‘‘paths’’ or sequences by
which particles are removed, counting the number of
holes that would be connected using such a set of paths.
The addition of new path types systematically improves
the result, making comparison to theory feasible for the
first time.

Schematically, the probability of bootstrap � � P1 is
represented P1 � �1

k�1�1� �ak�b, where b represents
the number of sides and a represents the increment
on the lattice. In the high density limit one takes the
natural logarithm of the product, approximates the sum
with an integral, and makes the substitution y � �k. For
� ! 1 this leads to �b=�a ln��

R
1
0�dy=y� ln�1� y� 	

�b	2=6a�1� �� [19]. In the modified bootstrap model,
a � 2 and b � 4, one obtains �	2=3�1� ��, and it is this
result that has been proven to be asymptotically exact
[15]. From Fig. 1 it is clear (as has often been reported)
that there is no agreement between the simulated results
for the total hole density (
) and the asymptotic result,
even for the highest densities we can simulate. It is
important to ask how much of this deviation comes
from the limited set of paths included in the theory and
how much from the fact that simulations can never reach
the truly asymptotic limit. Thus, we calculate exactly the
probability for the removal of concentric squares of par-
ticles, a result that includes all corner contributions, and
is valid for all densities. Then,

P�cs�
1 ��1����1

k�1c
�cs�
k ���;

c�cs�k ����1�4�2k12�4k1�2���4�6k1�8k: (1)

The numerical solution of Eq. (1) is in perfect agreement
with the simulation results of the symmetrically growing
squares process; see (�) in Fig. 1. However, it is still
many orders of magnitude different from the full simu-
lated connected hole density, although there is a clear
improvement over the purely asymptotic result
exp��	2=3�1� ���. In fact, using �1� �2k1�4 as
lower bounds for the coefficients c�cs�k ��� we find a
FIG. 3. Intermediate configurations (from left to right P1–P5) a
empty the lattice. The inner square from each of these figures is assu
the next parts to be emptied lie between this and the outer boundi
particles, blocking further movement in that direction. Light-shad
perimeter. The arrows on the squares indicate possible transitions in
This process restores that local configuration to one of the intermed
in two directions. The process terminates when the local configur
squares) or P1–P5 for small-asymmetry rectangles. Note that in
boundary implied by the arrow.
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modified asymptotic result for the hole density
�1� ���5 exp��A=�1� ��� [19].

Nevertheless, by permitting only such restricted paths
we have failed to correctly identify many holes as con-
nected. Our aim now in development of the theory is
therefore to systematically enlarge the possible paths in
the calculation, until we approach the full simulated
result, at each stage validating the theoretical calculation
by simulating the same restricted set of paths. By simu-
lation it is easy to show that indeed paths involving
symmetric removal are the most probable, but the con-
straint that all particles be removed from the boundary in
a single step results in loss of many holes. If instead the
boundary particles are simultaneously removed only on
adjacent sides of the square, then the emptying squares
are also permitted to ‘‘diffuse,’’ that is, change their
center of gravity during the process. This leads us to
identify many new holes that would otherwise be wrongly
identified as disconnected. One can go one stage further
and permit even asymmetric paths, eventually exhausting
all paths. However, by binning the paths adopted in the
simulation of the total connected hole density we find that
throughout the whole emptying process, beginning from
a connected hole, the ratio of the rectangular sides never
exceeds 1.4, by far the greatest contribution coming from
near-square process, providing they are permitted to
diffuse. We have been able to realize this approximation
in theory also. We define intermediate states of the system
as the squares illustrated in Fig. 3, with weight P�i�

k . Paths
implied by removal of particles map the growing vacant
region between only these states, larger by one step at
each stage. If we consider only the limited set P1–P3,
such processes correspond to growing and diffusing
squares. Inclusion of the states P4 and P5 permits in
addition ‘‘fluctuations’’ of the square by one additional
layer. These local intermediate states are related by the
coupled equations,

P�i�
k ��� �

X

j

c�i;j�k ���P�j�
k�1���; (2)
rising in evaluation of the sum over paths that may be used to
med to have been emptied of particles in the previous step, and

ng square. Dark-shaded outer regions imply a complete line of
ed outer regions have at least one vacancy in that part of the
volving the growth of two adjacent boundary lines by one step.
iate states again, with the internal empty square one step larger
ation makes a transition outside of the class P1–P3 (diffusing
P3 we have given an explicit example of the extension of the
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where i; j’s range from 1 ! n, with n � 3 in the diffusing
squares process, and n � 5 in its extended small-
asymmetric rectangular version. c�i;j�k ��� defines the
probability of migration from class j to i at the kth
step. These equations are solved subject to the initial
conditions, P�i�

1 � �1� ���1i.
The choice of these states, and transitions between

them, is far from trivial since we must ensure an ‘‘order-
ing’’ of the removal process if we wish to use a random
measure for the particles in calculating the coefficients
c�i;j�k ���. For the sake of simplicity, we here present only
the coefficients of the process involving diffusing
squares,

c�1;1�k �1�2�2k�2k�1; c�1;2�k ��1����1��k�;

c�1;3�k ��1���2; c�2;1�k �2�k�1��k�1�;

c�2;2�k �1�2�k�2k�2; c�2;3�k �2��1����k�1�k�;

c�3;1�k ��2k�1; c�3;2�k ��k�1��k�1�;

c�3;3�k ��2�12�k�2�4�k�1�2k�3�:

The total bootstrap probability P�1�
1 ��� may be calcu-

lated numerically for any density, limited only by the
precision of the computer. The same processes may be
simulated on the computer and are in each case identical
with the theory. Results for all are given in Figs. 1 and 2
for modified and conventional bootstraps.

The outcome is intriguing. Diffusing squares (4) im-
proves the comparison between theory and full simula-
tion, and small-asymmetry rectangles (5) yield results
that may (for the first time) begin to be credibly compared
to computer simulation of the full simulated hole density,
and implicitly the bootstrap correlation length in the
regime where simulations can be carried out.

In summary, for the bootstrap problem itself, new
computational and theoretical approaches have enabled
simulations and theory to be brought into reasonable
(indeed arbitrarily good) agreement across a wide range
of density. The fact is that both the theory and the simu-
lation do not adopt the very simple asymptotic form that
has been quoted in the literature until one reaches den-
sities and length scales that are beyond the natural inter-
est of physics. There nevertheless remain many areas of
physics where extended regimes of dynamic slowing and
near arrest are of great importance, and these can be dealt
with by the methods described here. Second, by properly
identifying the most probable paths (incidently thereby
respecting the symmetry of the problem) and developing
theory as a sum over only these paths, we obtain a very
useful approximation and systematic corrections around
it. In essence this amounts to a sort of ‘‘mean-field’’
approximation in the path integral (sum), more familiar
in field theory as the optimal instanton trajectory [22].
Inclusion of small asymmetry is equivalent to the
‘‘shape’’ fluctuations included in next to leading order
025501-4
in such calculations. This is more than an analogy; the
bootstrap process of this discontinuous transition pro-
duces an essential singularity precisely because, under-
lying it, is the physics of complex activated processes.

In this second point, but from a broader perspective,
and in line with the advances of previous authors [2,4], we
have linked the whole bootstrap endeavor (and crucially
those areas of physics for which it is considered relevant)
to an arena of physics that is already somewhat explored
and opened the pathway to numerous developments in the
theory of dynamical arrest, many of which will imme-
diately suggest themselves to the reader.
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