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Varieties of Dynamic Multiscaling in Fluid Turbulence
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We show that different ways of extracting time scales from time-dependent velocity structure
functions lead to different dynamic-multiscaling exponents in fluid turbulence. These exponents are
related to equal-time multiscaling exponents by different classes of bridge relations, which we derive.
We check this explicitly by detailed numerical simulations of the Gledzer-Ohkitani-Yamada shell
model for fluid turbulence. Our results can be generalized to any system in which both equal-time and
time-dependent structure functions show multiscaling.
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and exit-time E scales. We derive the bridge relations for
dynamic-multiscaling exponents for these three methods

In the multifractal model [2] the velocity of a turbulent
flow is assumed to possess a range of universal scaling
The dynamic scaling of time-dependent correlation
functions in the vicinity of a critical point was understood
soon after the scaling of equal-time correlations [1]. The
development of a similar understanding of the dynamic
multiscaling of time-dependent velocity structure func-
tions in homogeneous, isotropic fluid turbulence should
have implications for the temporal intermittency of ed-
dies advected by the mean flow. But studies of such
dynamic multiscaling still lag far behind their analogs
for the multiscaling of equal-time velocity structure func-
tions [2]. There are three major reasons for this: (i) The
multiscaling of equal-time velocity structure functions in
fluid turbulence [2] is far more complex than the scaling
of equal-time correlation functions in critical phenomena.
(ii) The dynamic scaling of Eulerian-velocity structure
functions is dominated by sweeping effects that relate
temporal and spatial scales linearly and thus lead to a
trivial dynamic-scaling exponent zE � 1, where the sub-
script E stands for Eulerian. (iii) Even if this dominant
temporal scaling because of sweeping effects is removed
(see below), time-dependent velocity structure functions
do not have simple scaling forms (Ref. [3]) and an infinity
of dynamic-multiscaling exponents is required. The dy-
namic-multiscaling exponents are related to the equal-
time multiscaling exponents by bridge relations, one class
of which were obtained in Ref. [3]. In the forced-Burgers-
turbulence context, a few bridge relations of another class
were obtained in Refs. [4,5]. If the bridge relations of
Refs. [3–5] are compared naively, then they disagree with
each other. However, the crucial point about dynamic
multiscaling, not enunciated clearly hitherto, although
partially implicit in Refs. [3–5], is that different ways
of extracting time scales from time-dependent velocity
structure functions yield different dynamic-multiscaling
exponents that are related to the equal-time multiscaling
exponents by different classes of bridge relations. We
systematize such bridge relations by distinguishing three
types of methods that can be used to extract time scales;
these are based, respectively, on integral I, derivative D,
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and check by an extensive numerical simulation that such
bridge relations hold in the Gledzer-Ohkitani-Yamada
(GOY) shell model for fluid turbulence.

To proceed further, let us recall that in homogeneous,
isotropic turbulence, the equal-time, order-p, velocity
structure function Sp�‘� � h��vk� ~xx; t; ‘��

pi 
 ‘p , for
�d�‘�L, where �vk� ~xx;t;‘��� ~vv� ~xx� ~‘‘;t� ~vv� ~xx;t�� �
� ~‘‘=‘�, ~vv� ~xx; t� is the fluid velocity at point ~xx and time t, L
is the large spatial scale at which energy is injected into
the system, �d is the small length scale at which viscous
dissipation becomes significant, p is the order-p, equal-
time multiscaling exponent, and the angular brackets
denote an average over the statistical steady state of the
turbulent fluid. The 1941 theory (K41) of Kolmogorov [6]
yields the simple scaling result K41p � p=3. However,
experiments and simulations indicate multiscaling; i.e.,
p is a nonlinear, convex function of p; and the
von Kármán–Howarth relation [2] yields 3 � 1. To
study dynamic multiscaling we use the longitudinal,
time-dependent, order-p structure function [3]

F p�‘; ft1; . . . ; tpg� � h��vk� ~xx; t1; ‘� . . .�vk� ~xx; tp; ‘��i: (1)

Clearly, F p�‘; ft1 � . . . � tp � 0g� � Sp�‘�. We nor-
mally restrict ourselves to the simple case t1 � t2 �
. . . � tq � t and tq�1 � tq�2 � . . . � tp � 0, for nota-
tional simplicity write F p�‘; t�, and suppress the q de-
pendence which should not affect dynamic-multiscaling
exponents (see below). To remove the sweeping effects
mentioned above, we must of course use quasi-
Lagrangian [3,7] or Lagrangian [8] velocities in Eq. (1),
but we do not show this explicitly here for notational
convenience. Given F p�‘; t�, we can extract a character-
istic time scale �p�‘� in several different ways, as we
describe later. The dynamic-multiscaling ansatz �p�‘� 

‘zp can now be used to determine the order-p dynamic-
multiscaling exponents zp. Furthermore, a naive exten-
sion of K41 to dynamic scaling [9] yields zK41p � K412 �
2=3 for all p.
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exponents h 2 I � �hmin; hmax�. For each h in this range,
there exists a set h � R3 of fractal dimension D�h�, such
that �v�~rr; ‘�=vL / �‘=L�h for ~rr 2 h , with vL the veloc-
ity at the forcing scale L, whence

Sp�‘�

vpL
�

h�vp�‘�i
vpL

/
Z
I
d��h�

�
‘
L

�
Z�h�

; (2)

where Z�h� � �ph� 3D�h��, the measure d��h� gives
the weight of the fractal sets, and a saddle-point evalu-
ation of the integral yields p � infh�Z�h��. The ph term
in Z�h� comes from p factors of �‘=L� in Eq. (2); the 3
D�h� term comes from an additional factor of �‘=L�3D�h�,
which is the probability of being within a distance 
‘ of
the set h of dimension D�h� that is embedded in three
dimensions. Similarly, for the time-dependent structure
function

F p�‘; t�

vpL
/
Z
I
d��h�

�
‘
L

�
Z�h�

Gp;h

�
t

�p;h

�
; (3)

where Gp;h�t=�p;h� has a characteristic decay time �p;h 

‘=�v�‘� 
 ‘1h, and Gp;h�0� � 1. If

R
1
0 t�M1�Gp;hdt ex-

ists, we can define the order-p, degree-M, integral time
scale

T I
p;M�‘� �

�
1

Sp�‘�

Z 1

0
F p�‘; t�t

�M1�dt
�
�1=M�

: (4)

We can now define the integral dynamic-multiscaling
exponents zIp;M via T I

p;M 
 ‘z
I
p;M . By substituting the

multifractal form (3) in Eq. (4), computing the time
integral first, and then performing the integration over
the multifractal measure by the saddle-point method, we
obtain the integral bridge relation

zIp;M � 1� �pM  p�=M; (5)

which was first obtained in Ref. [3]. Likewise, if
�@M=@tM�Gp;hjt�0 exists, we can define the order-p,
degree-M, derivative time scale

T D
p;M �

�
1

Sp�‘�
@M

@tM
F p�‘; t�jt�0

�
�1=M�

; (6)

the derivative dynamic-multiscaling exponents zDp;M via
T D

p;M 
 ‘z
D
p;M , and thence obtain the derivative bridge

relation

zDp;M � 1� �p  p�M�=M: (7)

Such derivative bridge relations, for the special cases
(a) p � 2;M � 1 and (b) p � 2;M � 2, were first ob-
tained in the forced-Burgers-turbulence context in
Refs. [5] and [4], respectively, without using quasi-
Lagrangian velocities but by using other methods to sup-
press sweeping effects [10]. Case (a) yields the interesting
result zD2;1 � 2, since 3 � 1. Both relations (5) and (7)
reduce to zK41p � 2=3 if we assume K41 scaling for the
equal-time structure functions.
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If we consider n nonzero time arguments for the struc-
ture function F p;n�‘; t1; . . . ; tn; . . . ; 0 . . . ; 0�, which we de-
note by F p;n�‘; t1; . . . ; tn� for notational simplicity, we
can define the integral-time scale, T I

p;M;n�‘� �
�1=Sp�‘�

R
1
0 F p�‘; t1; . . . ; tn�t

m11
1 dt1 . . . t

mn1
n dtn�1=�Mn�,

and the derivative-time scale, T D
p;M;n�‘���1=Sp�‘� �

�@m1=@tm1
1 �����@mn=@tmn

n �F p�‘;t1;...;tn�jt1�0;...;tn�0�
1=�Mn�,

where M �
Pn

i�1mi. From these we can obtain, as above,
two generalized bridge relations:

zIp;M;n � 1� �pnM  p�=�nM�;

zDp;M;n � 1� �p  p�nM�=�nM�:
(8)

We now study time-dependent structure functions of
the GOY shell model for fluid turbulence [2,11,12]:�

d
dt

� �k2n

�
un � i�anun�1un�2 � bnun1un�1

� cnun1un2�
� � fn: (9)

Here the complex, scalar velocity un, for the shell n,
depends on the one-dimensional, logarithmically spaced
wave vectors kn � k02n, k0 � 1=16, complex conjuga-
tion is denoted by �, and the coefficients an � kn,
bn � �kn1, and cn � �1 ��kn2, with � � 1=2,
are chosen to conserve the shell-model analogs of en-
ergy and helicity in the inviscid, unforced limit. By
construction, the velocity in a given shell is affected
directly only by velocities in nearest- and next-nearest-
neighbor shells. By contrast, all Fourier modes of the
velocity field interact with each other in the Navier-
Stokes equation as can be seen easily by writing it in
wave-vector space. Thus, the GOY shell model does not
have the sweeping effect by which modes (eddies) corre-
sponding to the largest length scales affect all those at
smaller length scales directly. Hence, it has been sug-
gested that the GOY shell model should be thought of as a
model for quasi-Lagrangian velocities [13]. We might
anticipate therefore that GOY-model structure functions
should not have the trivial dynamic scaling associated
with Eulerian velocities; we show this explicitly below.
We integrate the GOY model (9) by using the slaved,
Adams-Bashforth scheme [14,15], and 22 shells (1 �
n � 22), with fn � �n;1�1� i� � 5� 103 (Table I).
The equal-time structure function of order p and the
associated exponent is defined by Sp�kn� � hjunjpi 

k
p
n . However, the static solution of Eq. (9) exhibits a

three-cycle with the shell index n, which is effectively
filtered out [12] if we use p�kn� � hj=�un�2un�1un 
�1=4�un1unun�1�j

p=3i 
 k
p
n , to determine p. These ex-

ponents, shown in Table II, are in close agreement with
those found for homogeneous, isotropic fluid turbulence in
three dimensions [12]. We analyze the velocity �un�t��
time series for n � 4 to 13, i.e., for wave vectors well
within the inertial range [16].

For the GOY shell model we use the normalized,
order-p, complex, time-dependent structure function
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TABLE I. The viscosity �, time step �t, Taylor microscale ' � �
P

njunj
2=kn=

P
nknjunj

2�1=2,
the root-mean-square velocity urms � �2

P
njunj

2=kn=�2+k1��
1=2, the Taylor-microscale

Reynolds number Re' � 'urms=�, the integral scale Lint � �
P

njunj
2=k2n�=�

P
njunj

2=kn�, and
the box-size eddy turnover time �L � Lint=urms that we use in our numerical simulation of the
GOY shell model. Data from the first Ttr time steps are discarded so that transients can die
down. We then average our data for a time Tav.

� �t ' urms Re' Lint �L Ttr Tav

107 2� 104 0:7 0:35 2� 106 6:3 105�t 5� 104�L 105�L
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fp�n; t� � h�un�0�u�n�t��p=2i=Sp�kn�. The representative
plot of Fig. 1 shows that the imaginary part of
fp�n; t� is negligibly small compared to its real part.
Hence, we work with the real part of fp�n; t�, i.e.,
Fp�n; t� � <�fp�n; t��.

Integral and derivative-time scales can be defined for
the shell model (9) as in Eqs. (4) and (6). We now con-
centrate on the integral-time scale with M � 1,
TI
p;1�n; tu� �

Rtu
0 Fp�n; t�dt, the derivative-time scale

with M � 2, TD
p;2 � �@2Fp�n; t�=@t2jt�0�

1=2, and the
associated dynamic-multiscaling exponents defined via

TI
p;1�n; tu� 
 k

zIp;1
n and TD

p;2�n� 
 k
zDp;2
n [17]. The slope of

a log-log plot of TI
p;1�n� versus kn now yields zIp;1 (Fig. 1

and Table II). Preliminary data for zIp;1 were reported by
us in Ref. [9]. For extracting the derivative scale TD

p;2 we
extend Fp�n; t� to negative t via Fp�n;t� � Fp�n; t� and
use a centered, sixth-order, finite-difference scheme to
find �@2=@t2�Fp�n; t�jt�0. A log-log plot of TD

p;2�n� versus
kn now yields the exponent zDp;2 (Fig. 1 and Table II).

In Ref. [13] dynamic-multiscaling exponents were ex-
tracted not from time-dependent structure functions but
by using the following exit-time algorithm: Define the
decorrelation time for shell n, at time ti, to be Ti�n�, such
that, jun�ti�jjun�ti � Ti�j � '�1jun�ti�j2, with 0< '< 1.
The order-p, degree-M exit-time scale for the shell n is

TE
p;M � lim

N!1

"
1
N

PN
i�1 T

M
i jun�ti�jp

1
N

PN
i�1 jun�ti�j

p

#
�1=M�


k
zEp;M
n ; (10)

where the last proportionality follows from the dynamic-
multiscaling ansatz. In practice we cannot take the limit
TABLE II. Order-p (column 1) multiscaling exponents for 1 �
exponents p (column 2), integral-scale dynamic-multiscaling expo
the values of p in column 1, zIp;1 from our calculation using time-de
of order 1 zEp;1 (column 5), the derivative-time exponents zDp;2 (colum
zDp;2 from our calculation using time-dependent structure functio
(column 8). The error estimates are obtained as described in the t

Order �p� p zIp;1 [Eq. (5)] zIp;1

1 0:3777� 0:0001 0:6221� 0:0001 0:60� 0:02 0:6
2 0:7091� 0:0001 0:6686� 0:0002 0:67� 0:02 0:6
3 1:0059� 0:0001 0:7030� 0:0002 0:701� 0:009 0:7
4 1:2762� 0:0002 0:7298� 0:0003 0:727� 0:007 0
5 1:5254� 0:0005 0:7511� 0:0007 0:759� 0:009 0
6 1:757� 0:001 0:768� 0:002 0:77� 0:01 0
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N ! 1; in a typical run of length Tav (Table I) N ’ 109.
By suitably adapting the multifractal formalism used
above, we get the exit-time bridge relation zEp;M � 1�
�pM  p�=M, obtained in Ref. [13] only for M � 1.
Dynamic-multiscaling exponents obtained via this exit-
time method are shown for M � 1 and M � 2 in
Table II. The exit-time bridge relations for M > 0 are
the analogs of the integral-time bridge relation (5) and
those for M< 0 are the analogs of the derivative-time
bridge relation (7). Our results do not depend on ' for
0:3< '< 0:8.

Our numerical results for the equal-time exponents p
(column 2), the dynamic exponents zIp;1 (columns 3 and
4), zDp;2 (columns 6 and 7), and zEp;1 and zEp;2 (columns 5
and 8, respectively) for 1 � p � 6 are given in Table II.
The agreement of the exponents in columns 3 and 4 shows
that the bridge relation (5) is satisfied (within error bars);
a comparison of columns 6 and 7 shows that the bridge
relation (7) is satisfied. By comparing columns 4 and 5 we
see that the integral-time exponent zIp;1 is the same as the
exit-time exponent zEp;1; columns 7 and 8 show that the
derivative-time exponent zDp;2 is the same as the exit-time
exponent zEp;2. The relation zD2;1 � 2 mentioned above
[5] is not meaningful in the GOY model since
@Fp�n; t�=@tjt�0 vanishes (at the level of our numeri-
cal study). We have obtained 50 different values of each
of the dynamic-multiscaling exponents from 50 dif-
ferent initial conditions. For each initial condition time
averaging is done over a time Tav (Table I), which is larger
than the averaging time of Ref. [13] by a factor of about
104. The means of these 50 values for each of the
p � 6 from our simulations of the GOY model: equal-time
nent zIp;1 of degree 1 (column 3) from the bridge relation (5) and
pendent structure functions (column 4), the exit-time exponents
n 6) from the bridge relation (7) and the values of p in column 1,
n (column 7), and the exit-time exponent of order 2, zEp;2
ext.

zEp;1 zDp;2 [Eq. (7)] zDp;2 zEp;2

03� 0:007 0:6820� 0:0001 0:70� 0:02 0:677� 0:001
61� 0:007 0:7081� 0:0002 0:71� 0:01 0:719� 0:004
08� 0:001 0:7310� 0:0002 0:73� 0:01 0:739� 0:006
:74� 0:01 0:7509� 0:0003 0:744� 0:009 0:758� 0:006
:77� 0:01 0:7684� 0:0007 0:756� 0:009 0:778� 0:003
:79� 0:01 0:7836� 0:002 0:764� 0:009 0:797� 0:0008

024501-3



0 0.05 0.1
0

1

t/τ
L

ℜ
[f p(n

,t)
]

0 0.05 0.1
−0.1

0

0.1

t/τ
L

ℑ
[f p(n

,t)
]

n = 9, p = 5  

n = 9 , p = 5  

(a
1
) 

(a
2
) 

0 0.02 0.06
0

0.2

0.8

1

t/τ
L

F
p(n

,t)

p = 5  

n = 5  

n = 9  

(b) 

n = 7 

1 1.5 3
1

1.2

2.8

log
10

(k
n
)

lo
g 10

(T
I p,

1(n
))

   
   

  

zI
5,1

 = 0.75 

(c) 

1 1.5 3.5 4
−2

 −1.5

0

log
10

(k
n
)

lo
g 10

(T
D 3,

2(n
)) zD

3,2
 = 0.73

(d) 

FIG. 1 (color online). Plots of real (a1) and imaginary (a2) parts of the time-dependent structure function fp�n; t� for the GOY
shell model for shell number n � 9 and order p � 5 versus time t=�L, where �L is the box-size eddy turnover time (Table I). Note
that =�fp�n; t�� is negligibly small compared to Fp�n; t� � <�fp�n; t��. (b) Fp�n; t� versus t=�L for p � 5 and n � 5, 7, and 9.
Representative log-log plots (base 10) of the integral (c) and derivative (d) time scales TI

5;1�n� and TD
3;2�n� versus kn; the slopes of the

linear least-square fits in (c) and (d) yield the dynamic exponents zI5;1 and zD3;2, respectively.
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dynamic-multiscaling exponents are shown in Table II;
the standard deviation yields the error. This averaging is
another way of removing the effects of the three-cycle
mentioned before.

We have shown systematically how different ways of
extracting time scales from time-dependent velocity
structure functions or time series can lead to different
sets of dynamic-multiscaling exponents, which are re-
lated in turn to the equal-time multiscaling exponents
p by different classes of bridge relations. Our extensive
numerical study of the GOY shell model for fluid turbu-
lence verifies explicitly that such bridge relations hold.
Experimental studies of Lagrangian quantities in turbu-
lence have been increasing [18]. We hope our work will
stimulate studies of dynamic multiscaling in such experi-
ments. Furthermore, the sorts of bridge relations we have
discussed here must also hold in other problems, with
multiscaling of equal-time and time-dependent struc-
ture functions or correlation functions, such as passive-
scalar and magnetohydrodynamic turbulence. As we
will report elsewhere [19] the intermittency of the ad-
vecting velocity field is crucial for dynamic multiscaling
in the passive-scalar case. For the Kraichnan model, in
which the passive scalar is advected by a zero-mean,
Gaussian velocity field that is white in time and whose
variance scales as ‘,, zDp;1 � zIp;M � 2 , for all p and
M, even though passive-scalar, equal-time structure func-
tions exhibit multiscaling; if the advecting velocity field
is intermittent, then dynamic multiscaling is obtained.
Numerical studies of time-dependent, quasi-Lagrangian-
velocity structure functions in the Navier-Stokes equa-
tion, already under way, will also be discussed elsewhere.
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