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In a second microgravity experiment on the formation of dust agglomerates by Brownian motion-
induced collisions we find that the agglomerates have fractal dimensions as low as 1.4. Because of much
better data, we are now able to derive the diffusion constant of the agglomerates as a function of mass,
to show that a power law with an exponent of 1.7 describes the temporal evolution of the mean
agglomerate mass very well and to prove that the collision cross section is proportional to the
geometrical cross section. In addition to that we derived the universal mass-distribution function of

the agglomerates.
DOI: 10.1103/PhysRevLett.93.021103

It is still unknown how the micrometer-sized dust
particles in the young solar system accumulated into
I-km-sized planetesimals, the first planetary bodies
with substantial gravitational attraction, although in re-
cent years considerable progress has been made in the
understanding of the physics and dynamics of preplane-
tary dust agglomeration. The current knowledge is that
dust grains stick to one another due to van der Waals
forces [1] and form low-density fractal agglomerates
when the collision velocities are sufficiently low [2—-4].
For higher impact velocities, dust agglomerates are com-
pacted or fragmented [2,4,5]. At the earliest stage of
planet formation, the growth scenario is relatively simple
when the wm-sized dust particles are so strongly coupled
to the surrounding gas of the protoplanetary disk that the
sole source for their mutual collisions and, hence, for
agglomeration, is their thermal (Brownian) motion [6].
In a first paper [7], we reported on a microgravity ex-
periment in which we experimentally simulated the
Brownian-motion-driven agglomeration of micrometer-
sized dust particles. Rapid formation of extremely fluffy,
chainlike dust agglomerates was observed, but the sam-
pling rate was too small so that many physical properties
of the self-interacting cloud of dust agglomerates could
not be derived.

In this paper, we report on a second microgravity
experiment with a much higher sampling rate, which
was carried out on board the sounding rocket Maser 8
in May 1999. The microgravity duration of the Maser
rocket is 6 min, long enough for the evolution of dust
agglomerates of considerable size, as shown in Ref. [7].
Very similar to the previous microgravity experiment, a
sample of monodisperse, spherical SiO, dust grains with
particle radii of s, = 0.5 wm was dispersed into a dilute
gas of pressure p = 2 mbar and temperature 7 = 300 K.
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PACS numbers: 96.35.Cp, 45.70.—n, 61.43.Hv, 81.10.Mx

The number densities, masses, structures, and motion
of the dust particles and agglomerates in the sample were
determined using high-speed, long-distance microscopy.
With two orthogonally mounted microscopes with a field
of view of 0.25 X 0.25 mm? and an experimentally de-
termined depth of field of ~90 wm we continuously ob-
served a subvolume of the dust cloud. Because of a bright-
field illumination, the dust agglomerates were visible as
darker-than-background silhouettes (see Fig. 1 in Ref. [7]).
A more detailed description of the experimental setup
and measurement technique can be found in Refs. [8,9].

For the determination of the mass of an individual dust
agglomerate, we used the fact that the SiO, monomers
were highly transparent. Hence, each individual micro-
scopic glass bead inside a dust agglomerate absorbs the
same amount of light, and the mass of an agglomerate can
be determined by its total light absorption, even when the
resolution of the long-distance microscope is too low to
resolve single monomers. It turned out that we could reach
a mass sensitivity that was better than the mass of a
monomer grain, my = 1.0 X 1071 kg.

During the experimental run, the microscopes were
continuously scanning through the dust cloud. Each of
the 12 scans lasted 30 s and resulted in a total observa-
tional volume of 0.6 mm? for each microscope. As in the
previous experiment, the dust cloud was not homogeneous
and was slowly moving across the vacuum chamber with a
constant velocity of (180 * 20) ums~! due to thermo-
phoresis. As a result of the dominating effect of thermal
motion, the dust agglomerates were randomly oriented in
space. Our data do not reveal any agglomerate alignment
with respect to the direction of the drift motion.

Because of the low number of dust agglomerates, only
an average diffusion constant for the ensemble of dust ag-
glomerates could be derived in Ref. [7]. In the experiment
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described here, the total number of dust agglomerates was
sufficiently high to derive a mass dependency of the
diffusion constant of fractal dust agglomerates. The dif-
fusion constant D is related to the one-dimensional mean
square displacement (Ax?) and the temporal difference in
successive observations At by

T T

(A?) = 2DAt[1 -2+ Aftexp(—m/ff)} 0
[10]. Here, 7, is the gas-grain response time. For the
Epstein gas-drag regime (free molecular flow) that was
present in the here-described experiments, the gas-grain
response time is proportional to the mass m of the ag-
glomerate (inertia) and inversely proportional to the ag-
glomerate’s geometrical cross section A (aerodynamic
friction). The gas-grain response time in the free molecu-
lar flow regime is given by

1 m

T G4/ 6P)p g A’ @

[11,12] with p,, © = /8kT/(7m,), 6P, and k being the
mass density of the gas, the mean thermal velocity of the
gas molecules of mass m,, a moment transfer coefficient
which was experimentally determined for dust agglom-
erates to 6P = 1.11 [12], and Boltzmann’s constant, re-
spectively. For the monomer grains and the gas properties
in this experiment, we get 759 = 0.898 ms. Mind that,
due to agglomeration, the response time of an aggregate,
75, will be changed with respect to the response time of
the monomer grain, 7. The time steps between obser-
vations in our experiment range from At = 5 msto At =
30 ms. Thus, Ar > 7r0 for most observation times and
the term in the angular brackets in Eq. (1) is so close to
unity that we get the classical expression for the diffusion
equation

(Ax*) = 2DA¢ 3)

[13]. As the diffusion constant and the gas-grain response
time are related by

Tr
D = kT —, 4
m

a measurement of D yields an independent determination
of the gas-grain response time 7;. Figure 1 shows the
measurements of the diffusion constants for dust agglom-
erates consisting between 2 and ~40 monomer grains.
The different symbols in Fig. 1 represent the sampling
times At = 5, 10, ..., 30 ms used for the determination of
D in Eq. (3). There were sufficiently many dust agglom-
erates with small masses between 2 and 6 monomers in
our sample so that the data points for these masses are
averages of a single-mass sample. For the agglomerates
with monomer numbers = 7, the data points are logarith-
mic averages taken from dust agglomerates with similar
masses.

The data in Fig. 1 show a steady decrease of the
diffusion constant with increasing agglomerate mass.
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FIG. 1. Diffusion constant for fractal dust agglomerates of

different masses. The different symbols mark measurement-
time intervals of Ar=5,10,...,30 ms. The solid line is the
best linear fit to the data and has a slope of @ = —0.9. The two
dashed lines with slopes —3/4 and —1 mark the allowed range
of diffusion constants for agglomerates. The arrow denotes the
diffusion constant of monomer grains.

There is no systematic dependence of the diffusion con-
stant on the sampling time, and a least-squares fit of all
data points to a power law D(m) = D(my)m® yields a =
—0.91 * 0.14 (solid line in Fig. 1) with a fixed best-guess
value D(mg) = 3.56 X 107° m*>s~! (arrow in Fig. 1).
With Egs. (2) and (4) we get

A(m) = m®?, (&)

valid for fractal agglomerates with Dy =~ 1.4. Here, D/ is
the fractal dimension of agglomerates following a mass-
size relation m/my r?f , with r, being the radius of
gyration.

The above-mentioned fractal dimension of the agglom-
erates formed by pure Brownian motion was derived by
plotting the agglomerate masses as a function of their
two-dimensional radii of gyration r, (Fig. 2) which were
approximated by measuring the intensity distribution of
the agglomerate images. Whenever multiple images of an
agglomerate were available, we used the maximum value
of the radius of gyration to compensate for projection
effects. Because of the limited resolution of the long-
distance microscope, the measured linear extent of small
agglomerates was unrealistically high (crosses in Fig. 2)
so that we restricted ourselves to agglomerate masses m =
12 my (square symbols in Fig. 2) for the determination of
the fractal dimension.

It can be seen in Fig. 2 that for the larger dust agglom-
erates, the mass follows a power law of the maximum
radius of gyration which gives a fractal dimension of
Dy = 1.41 £0.06 (solid line in Fig. 2). This value for
the fractal dimension of the dust agglomerates is close to
the earlier value of D, = 1.3, indirectly determined in
Ref. [7] by comparison of the internal mass distribution of
a few agglomerates to agglomerates formed by computer
simulations.
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FIG. 2. Masses of fractal dust agglomerates as a function of
the radius of gyration. Each symbol marks one dust agglomer-
ate. For agglomerate masses m/mg = 12 (square symbols), the
mass-size relation follows a power law with slope 1.41 (solid
line) which we consider as the fractal dimension of the dust
agglomerates. The finite resolution of the long-distance micro-
scope disturbs the measurement of D for smaller agglomerates
(crosses).

The monomer number densities were constant in eight
time intervals and ranged from ny, = 0.6 X 10'> m™3 to
3.9 X 10" m™3. Each of these eight dust clouds was
observed by two long-distance microscopes so that we
get 16 dust-agglomerate samples. For each of those
samples, we determined ng, from which we derived the
collision time scale for the monomer grains by

1

noo'ovo’

T =

with o = 4ms3 and vy = 4/kT/mm, being the colli-
sion cross section and the mean thermal collision ve-
locity of monomer grains, respectively. For each dust
cloud, we determined the agglomerate-mass spectrum
and the mean mass as a function of the average time t.
The mass and time averages were derived by m(r) =
(X, m2) /(S m] [14]and ¢ = [(T, £,)/N], respec-
tively. Here, the index i = 1, ..., N describes the ith dust
agglomerate in the sample of a total of N agglomerates in
each dust cloud. Thus, m; and ¢; are the mass and time of
appearance of the ith dust agglomerate, respectively.
Figure 3 shows the evolution of the mean agglomerate
mass as a function of time in units of the monomer
collision time 7.

In contrast to our earlier experiment [7], the new data
span a much larger time interval z/7=0.9,...,13.
Figure 3 shows a steep increase of the mean agglomerate
mass with time. To derive a quantitative dependence of m
on ¢/, we fitted the mean-mass data to the theoretical

function
e _ [(1 - y)<a1 + cﬂ'/ly, ©)
mg T

derived in Ref. [2] for the pure monodisperse growth case.

021103-3

FIG. 3. Temporal evolution of agglomerate masses. Each data
point represents the mean agglomerate mass observed at an
average time ¢ (in units of the monomer-collision time 7). The
solid curve represents the best-fitting solution to a monodis-
perse growth [Eq. (6)].

Here, a is the ratio between the theoretical and the ex-
perimentally determined monomer collision times, and ¢
is a constant which determines the initial condition
m(0)/my =[(1 — ) c]"/0=7). With a least squares fit to
the data in Fig. 3 we get a = 1.28 = 0.67, ¢ = 2.05 =
1.15, and 1/(1 — ) = 1.71 = 0.65. The variable y is
theoretically determined by the relations

v(m)oc\/gocmﬁ, om)«m?, and y=pB+6
(7

for ballistic collisions between the dust agglomerates or
D(m) = mP, s(m)xm®, and y=pB+68 (8)

for diffusion-limited aggregation, with wv(m), o(m),
D(m), and s(m) being the mean thermal collision velocity,
collision cross section, diffusion constant, and size of
agglomerates of mass m, respectively.

For t = 0, we get m(0)/m, = 1.36 which is consistent
with previous values of the mean initial mass [7]. For
t/7 > 1, the mean agglomerate mass follows a power law
m(t)/mgy « (t/7)"7. Following Egs. (7) and (8) and the
results from this work, ie., D(m) « m~%° and s(m) =
m'/14, the theoretical exponent 7y is given by y = 6 —
0.5 for the ballistic case and y = —0.2 for the diffusion-
limited case. Unfortunately, the mass exponent of the
collision cross section for agglomerates with very low
fractal dimensions is unknown. A lower limit to the
collision cross section is given by the geometrical cross
section A(m) [see Eq. (5)] so that § = 0.9. On the other
hand, suprathermally rotating fractal dust agglomerates
might have collision cross sections as high as o « s(m)?
so that we can assume 6 = 1.4. Hence, 0.4 = y = 0.9.
For t/7 > 1, the power law exponent in Eq. (6) should
therefore have values of 0.83 for diffusion-limited growth
and 1.7,...,10 for ballistic growth. Because of the
measured exponent of 1.71 in Eq. (6) we can exclude
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FIG. 4. Universal mass spectrum of the dust agglomerates
grown by Brownian-motion-induced collisions. The normal-
ized cumulative mass of the ensemble of dust agglomerates is
shown as a function of the individual agglomerate masses m;(t)
normalized by the mean agglomerate mass m(t) for all dust
agglomerates with t/7 = 3.

diffusion-limited growth for our experimental scenario
and we can conclude that § = 0.9 so that A(m) « o(m)
seems very well justified. Hence, we can exclude a con-
siderable increase in collision cross section by suprather-
mal rotation. This is also supported by the continuous
observation of the motion of individual dust agglomerates
which showed only very slow rotation.

The most crucial assumption behind the derivation of
Eq. (6) was the monodispersity of the agglomerates pres-
ent in the ensemble. In this paper, we restrict ourselves to
t/7 > 1, for which the mass-distribution function should
be self-preserving [14,15]. By numerical simulations of
the Brownian agglomeration of dust, it was shown [14]
that in this limit, a universal mass-distribution function
exists, when the individual agglomerate masses m; are
substituted by m;(r)/m(t), with the mean-mass function
m(t) given by Eq. (6). In Fig. 4, we plotted the normalized
cumulative mass distribution with ¢/7 = 3.

The data points fall onto a well-defined S-shaped curve.
It should be mentioned that due to the limited observa-
tional volume, the shape of the cumulative-mass curve
towards the upper mass end might be influenced by small-
number statistics of large dust agglomerates. The central
50% (90%) of the mass-distribution function in Fig. 4
comprise dust agglomerates in the mass range 0.5 <
m;/m =< 1.5 (0.2 < m;/m < 2.3) so that we can conclude
that the condition of quasimonodispersity is sufficiently
well satisfied. A comparison of the widths of the experi-
mental with the theoretical self-preserving mass spec-
trum in Ref. [14] shows good agreement. However, the
width of the experimental mass distribution function is
much narrower than the ones theoretically derived in
Ref. [15] for Dy = 2,..., 3.

In this paper, we presented the results of a second
microgravity experiment on the agglomeration of mi-
cron-sized dust particles due to Brownian motion. With
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the new data, we could show that the diffusion constant of
low-fractal-dimension dust agglomerates scales almost
inversely proportional to the agglomerate mass. The frac-
tal dimension of the agglomerates that form due to stick-
ing collisions were found to be D, = 1.4 which is close to
the value suggested in Ref. [7]. The temporal evolution of
the mean mass of the agglomerate sample could be fol-
lowed over an extended time range. It turned out that an
analytic approximation to the growth equation fits the
data very well. The ultimate power law of the growth
curve with an exponent of ~1.7 can be explained by
ballistic, rather than diffusion-limited, agglomeration
and a collision cross section of the dust agglomerates
that is proportional to the geometrical cross section. The
justification of the approximate validity of the analytical
solution is given by the quasimonodispersity of the
sample of dust agglomerates as shown by the universal
mass-distribution function in Fig. 4.
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