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Black Hole Mass Decreasing due to Phantom Energy Accretion
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Solution for a stationary spherically symmetric accretion of the relativistic perfect fluid with an
equation of state p��� onto the Schwarzschild black hole is presented. This solution is a generalization
of Michel solution and applicable to the problem of dark energy accretion. It is shown that accretion of
phantom energy is accompanied by the gradual decrease of the black hole mass. Masses of all black
holes tend to zero in the phantom energy Universe approaching the Big Rip.
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where � and p are the dark energy density and pressure
correspondingly, and u� � dx�=ds is a fluid four velocity

The constant A which determines the accretion flux is
calculated by fixing parameters at a critical point. This
Observations of distant supernovae and cosmic micro-
wave background anisotropy indicate in favor of the
accelerating expansion of the Universe [1]. In the frame-
work of a general relativity, it means that a considerable
part of the Universe consists of the dark energy: the
component with a positive energy density � > 0 and
with a negative pressure p <��1=3��. This dark energy
may be in the form of a vacuum energy (cosmological
constant �) with p � ��, or a dynamically evolving
scalar field with a negative pressure (quintessence [2] or
k essence [3]). One of the peculiar features of the cosmo-
logical dark energy is a possibility of the Big Rip [4]: the
infinite expansion of the Universe during a finite time.
The Big Rip scenario is realized if dark energy is in the
form of the phantom energy with �� p < 0. In this case,
the cosmological phantom energy density grows at large
times and disrupts finally all bounded objects up to sub-
nuclear scale.

What would be the fate of black holes in the Universe
filled with the phantom energy? Below we find the solu-
tion for a stationary accretion of the relativistic perfect
fluid with an arbitrary equation of state p��� onto the
Schwarzschild black hole. Using this solution, we show
that the black hole mass diminishes by accretion of the
phantom energy. Masses of all black holes gradually tend
to zero in the phantom energy Universe approaching the
Big Rip. The diminishing of a black hole mass is caused
by the violation of the energy domination condition ��
p � 0 which is a principal assumption of the classical
black hole ‘‘nondiminishing’’ theorems [5]. Another con-
sequence of the existence of a phantom energy is a pos-
sibility of traversable wormholes [6].

The known analytic relativistic accretion solution onto
the Schwarzschild black hole by Michel [7] (see also [8])
is not applied for a general case of a dark energy accretion.
We find the requested generalization of Michel solution by
modeling of the dark energy in the black hole gravita-
tional field by the test perfect fluid with a negative
pressure, an arbitrary equation of state p���, and
energy-momentum tensor T�	 � ��� p�u�u	 � pg�	,
0031-9007=04=93(2)=021102(4)$22.50 
with u�u� � 1. The integration of the time component of
the energy-momentum conservation law T�	;	 � 0 gives
the first integral of motion for the stationary spherically
symmetric accretion (the relativistic Bernoulli or energy
conservation equation):
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where x � r=M, u � dr=ds, r is a radial Schwarzschild
coordinate, M is a black hole mass, and C1 is a constant
determined below. To obtain another integral of motion,
we use the projection of the energy-momentum conserva-
tion law on the four-velocity u�T

�	
;	 � 0, which for a

perfect fluid is

u��;� � ��� p�u�;� � 0: (2)

The integration of (2) gives the second integral of motion
(the energy flux equation):
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where u < 0 in the case of inflow motion and a dimen-
sionless constant A > 0. Note that the second integral of
motion (3) is obtained without use of the particle con-
servation law. This is the principal generalization of the
Michel approach [7]. From (1) and (3), one can easily
obtain
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where C2 � �C1=A � �1 � p��1�. From (3) and (4),
one can find the relations for the fluid velocity uH �
u�2M� and density �H � ��2M� at the black hole horizon
r � 2M:
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provides us with the continuity of the solution from the
infinity to a horizon. Following Michel [7], we fix pa-
rameters of critical point x � x	:

u2	 �
1

2x	
; c2s��	� �

u2	
1� 3u2	

; (5)

where c2s��� � @p=@� is the square of sound speed. Using
(4) and (5), one can find the following relation:
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�1 � p��1�

1� 3c2s��	��

�1=2 � exp
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which determines the density at a critical point �	 �
��x	�. Then, for a given �	, with the help of (5), one
can find x	 and u	. Constant A is fixed by substituting of
the calculated values in (3). Note that there is no critical
point outside the black hole horizon (x	 > 1) for c2s < 0 or
c2s > 1. This means that for unstable perfect fluid with
c2s < 0 or c2s > 1 a dark energy flux onto the black hole
depends on the initial conditions. This result has a simple
physical interpretation: The accreting fluid has the criti-
cal point if its velocity increases from subsonic to trans-
sonic values. In a fluid with a negative c2s or with c2s > 1,
the fluid velocity never crosses such a point. It should be
stressed, however, that fluids with c2s < 0 are hydrody-
namically unstable (see discussion in [9,10]).

Equations (3) and (4) along with the equation of state
p � p��� describe the requested accretion flow onto the
black hole. These equations are valid for perfect fluid with
an arbitrary equation of state p � p���, in particular, for
a gas with zero-rest-mass particles (thermal radiation),
for a gas with nonzero-rest-mass particles, and for a dark
energy. For a nonzero-rest-mass gas, Eqs. (3) and (4) are
reduced to similar ones found by Michel [7].

The black hole mass changes at a rate _MM � �4�r2T r
0

due to the fluid accretion. With the help of (3) and (4), this
can be expressed as

_MM � 4�AM2
�1 � p��1��: (6)

From this equation it is clear that the accretion of a
phantom energy with �1 � p��1�< 0 is always accom-
panied with the diminishing of the black hole mass. This
result is valid for any equation of state p � p���with p�
� < 0. If we neglect the cosmological evolution of �1,
then from (6) we obtain

M � Mi

�
1�

t
�

�
�1
; (7)

where Mi is an initial mass of the black hole
and a characteristic evolution time � � f4�AMi
�1 �
p��1��g

�1.
As a particular fully solvable example, we consider the

perfect fluid with a linear equation of state:

p � ���� �0�; � � const; �0 � const; (8)

where � � c2s and it is supposed that � > 0. Among
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others, this model includes radiation (p � �=3), ultrahard
equation of state (p � �), and the simplest models of dark
energy (�0 � 0,�< 0). The constant� is connected with
an often used parameter w � p=� by the relation w �
���� �0�=�. The physically reasonable case corre-
sponds to 0<� � 1.

In the linear model (8), the radius of critical point x	 �
�1� 3��=2�, velocity at critical point u2	 � �=�1� 3��,
velocity at the horizon uH � ��A=4���=�1���, and con-
stant A determining the energy flux in (6) is [11]

A �
�1� 3���1�3��=2�

4�3=2
: (9)

This relation is valid only for stable fluid with 0<� � 1.
For unstable fluid with �< 0, the constant A is indeter-
minable by the condition of the solution continuity from
critical point consideration. We suppose that in the un-
stable case the growth of instabilities in the accretion flow
will cause the asymptotic growth of the accretion velocity
up to the limiting speed of light at the horizon uH ! �1.
This helps to fix the value of constant A: A � 4.

For some particular choices of parameter �, the values
��x� and u�x� can be calculated analytically. For example,
for � � 1=3 the fluid density is given by
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The density distribution for another physically interest-
ing case � � 1 is given by
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: (11)

The corresponding radial fluid velocity u � u�x� can be
calculated by substituting of (10) or (11) into (1). For �0 �
0, the solutions (10) and (11) describe correspondingly a
thermal radiation and a fluid with ultrahard equation of
state. In the case of �1 <��0=�1� ��, the solutions (10)
and (11) describe the phantom energy falling onto
the black hole. For example, a phantom energy flow
with parameters � � 1 and �0 � �7=3��1 results in a
black hole mass diminishing with the rate _MM �
��8�=3��2M�2�1.
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Now we turn to the problem of the black hole evolution
in the Universe with the Big Rip when a scale factor a�t�
diverges at finite time [4]. For simplicity, we will take into
account only dark energy and will disregard all other
forms of energy. The Big Rip solution is realized for ��
p < 0 and �<�1. From the Friedmann equations for
the linear equation of state model, one can obtain j��
pj / a�3�1���. Taking for simplicity �0 � 0, we find the
evolution of the density of a phantom energy in the
Universe:

�1 � �1;i
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t
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�2
; (12)

where
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and �1;i is the initial density of the cosmological phan-
tom energy and the initial moment of time is chosen so
that the ‘‘doomsday’’ comes at time �. From (6) using
(12), we find the black hole mass evolution:

M � Mi

�
1�

Mi

_MM0�

t
�� t

�
�1
; (14)

where _MM0 � �3=2�A�1j1� �j and Mi is the initial mass
of the black hole. For � � �2 and a typical value of A �
4 (corresponding to uH � �1), we have _MM0 � 3=8. In the
limit t! � (i.e., near the Big Rip), the dependence of
black hole mass on t becomes linear, M ’ _MM0 ��� t�.
While t approaches �, the rate of black hole mass decrease
does not depend on both an initial black hole mass and the
density of the phantom energy: _MM ’ _MM0. In other words,
masses of all black holes in the Universe tend to be equal
near the Big Rip. This means that the phantom energy
accretion prevails over the Hawking radiation until the
mass of black hole is the Planck mass [12].

In the remaining, let us confront our results with the
calculations of (not phantom) scalar field accretion onto
the black hole [13–16]. The dark energy is usually mod-
eled by a scalar field # with potential V�#�. The perfect
fluid approach is more rough because for given ‘‘perfect
fluid variables’’ � and p one cannot restore the ‘‘scalar
field variables’’ # and r#. In spite of the pointed differ-
ence between a scalar field and a perfect fluid, we show
below that our results are in very good agreement with the
corresponding calculations of a scalar field accretion onto
the black hole.

The Lagrangian of a scalar field is L � K � V, where
K is a kinetic term of a scalar field # and V is a potential.
For the standard choice of a kinetic term K � #;�#

;�=2,
the energy flux is T0r � #;t#;r. Jacobson [13] found the
scalar field solution in Schwarzschild metric for the case
of zero potential V � 0: # � _##1
t� 2M ln�1� 2M=r��,
where #1 is the value of the scalar field at the infinity. In
[15], it was shown that this solution remains valid also for
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a rather general form of runaway potential V�#�. For this
solution, we have T r

0 � ��2M�2 _##2
1=r

2 and, correspond-
ingly, _MM � 4��2M�2 _##2

1.
It is interesting to note that the energy-momentum

tensor constructed from Jacobson solution completely
coincides with one for perfect fluid in the case of an
ultrahard equation of state p � � under the replacement
p1 ! _##2

1=2, �1 ! _##2
1=2 [11]. Therefore the scalar field

in Jacobson solution is a perfect fluid. In a view of this
coincidence, it is easy to see the agreement of our result
(6) for _MM in the case of p � � and the corresponding
result of [13,15].

To describe the phantom energy, the Lagrangian of a
scalar field must have a negative kinetic term [4]; for
example, K � �#;�#

;�=2. In this case, the phantom
energy flux onto a black hole has the opposite sign, T0r �
�#;t#;r, where # is the solution of the same Klein-
Gordon equation as in the case of standard scalar field,
however, with the replacement V ! �V. For zero poten-
tial, this solution coincides with that obtained by
Jacobson [13] for a scalar field with the positive kinetic
term. A Lagrangian with a negative kinetic term and
V�#� � 0 does not describe, however, the phantom en-
ergy. At the same time, the solution for scalar field with
potential V�#� � 0 is the same as with a positive constant
potential V0 � const, which can be chosen so that � �
� _##2=2� V0 > 0. In this case, the scalar field represents
the required accreting phantom energy � > 0 and p <
�� and provides the decrease of black hole mass with the
rate _MM � �4��2M�2 _##2

1.
The simple example of phantom cosmology (without a

Big Rip) is realized for a scalar field with the potential
V � m2#2=2, wherem� 10�33 eV [17]. After short tran-
sition phase, this cosmological model tends to the asymp-
totic state with H ’ m#=31=2 and _## ’ 2m=31=2. In the
Klein-Gordon equation, the m2 term (with the mentioned
replacement V ! �V) is comparable to other terms only
at the cosmological horizon distance. This means that the
Jacobson solution is valid for this case also. Calculating
the corresponding energy flux, one can easily obtain _MM �
�4��2M�2 _##2

1 � �64M2m2=3. For M0 � M� and m �
10�33 eV, the effective time of black hole mass decrease
is � � �3=64�M�1m�2 � 1032 yr.

The possible physical interpretation of a black hole
mass diminishing is that accreting particles of a phantom
scalar field have a total negative energy [18]. The similar
negative energy particles are created in the Hawking
radiation process and participate in the Penrose black
hole rotation energy extraction mechanism. Formally say-
ing the black hole mass decreasing in the process of the
phantom energy accretion is due to the violation of the
energy domination condition in phantom energy. It should
be noted that the existence of the horizon is not crucial for
the decrease of the black hole mass due to phantom
energy accretion. The one-way-membrane property of
the horizon merely makes this accretion inevitable and
021102-3
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irreversible. Any object or device would diminish its mass
if it is capable of capturing phantom energy.
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