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We study the equilibrium properties of a monomer-monomer A� B ! ; reaction on a two-dimen-
sional substrate containing randomly placed catalytic bonds. Interacting A and B species undergo
continuous exchanges with particle reservoirs and react as soon as a pair of unlike particles appears on
sites connected by a catalytic bond. For annealed disorder in the placement of catalytic bonds the model
is mapped onto a general spin S � 1 model and solved exactly for the pressure in a particular case. At
equal activities of the two species a second order phase transition is revealed.
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substrates have been focused so far on the effect of site-
dependent adsorption and desorption rates because natu-

equal partial vapor pressures of the A and B species this
system exhibits a second-order phase transition which
Catalytically activated reactions (CARs) involve par-
ticles that react only in the presence of another agent —a
catalyst —and remain chemically inactive otherwise.
These processes are widespread in nature and used in a
variety of technological and industrial applications [1].

The work of Ziff, Gulari, and Barshad [2] on the
‘‘monomer-dimer’’ model, introduced as an idealized
description of the important process of CO oxidation on
a catalytic surface, as well as subsequent studies of a
simpler ‘‘monomer-monomer’’ reaction model [3,4], has
been an important step in the understanding of CARs
properties by revealing several remarkable features [2].
On a two-dimensional (2D) substrate, upon lowering the
CO adsorption rate the system undergoes a first-order
phase transition from a CO saturated inactive phase into
a reactive steady state, followed by a continuous transi-
tion into an O2-saturated inactive phase, which belongs to
the same universality class as directed percolation and the
Reggeon field theory [5]. The monomer-monomer model
exhibits a first-order transition from a phase saturated
with one species to one saturated with the other; allowing
desorption of one species leads to a continuous transition
that also belongs to the directed percolation universality
class [4]. For these two models, different aspects of the
dynamics of the adsorbed phase have been investigated
[2–7], confirming an essentially collective behavior. In
contrast, the equilibrium properties of CARs are much
less studied, and the understanding of the equilibrium
state remains rather limited. Recently, an exact solution
for a one-dimensional monomer-monomer model has
been presented [8], but for the physically important 2D
substrates no exact solutions are known as yet.

Realistic substrates are typically disordered and the
actual catalyst is an assembly of mobile or localized
catalytic sites or islands [1]. Theoretical studies that
have addressed the behavior of CARs on disordered
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ral catalysts are, in general, energetically heterogeneous
[9,10]. In contrast, the behavior on inert substrates that
are decorated by catalytic particles has been much less
studied; this case is relevant for artificially designed
catalysts [11].With the exception of a few exactly solvable
1D models of A� A ! ; reactions [12] and a
Smoluchowski-type analysis of d-dimensional CARs
[13], for random spatial distributions of the catalyst
only phenomenological generalizations of the mean-field
‘‘law of mass action’’ have been proposed so far [1].
Consequently, an exact analytical solution of (albeit
idealized) models involving a 2D random catalytic sub-
strate is very desirable since it provides valuable insight
into the effects of disorder on the CARs properties.

In the following we present such an exactly solvable
model of a monomer-monomer A� B ! ; reaction on a
2D inhomogeneous, catalytic substrate and study the
equilibrium properties of the two-species adsorbate. The
substrate contains randomly placed catalytic bonds of
mean density q, which connect neighboring adsorption
sites. The interacting A and B (monomer) species undergo
continuous exchanges with corresponding adjacent gas-
eous reservoirs. A reaction A� B ! ; takes place in-
stantaneously if A and B particles occupy adsorption sites
connected by a catalytic bond. We find that for the case of
annealed disorder in the placement of the catalytic bonds
the reaction model under study can be mapped onto the
general spin S � 1 (GS1) model [14]. This allows us to
exploit the large number of results obtained for the GS1
model [14] in order to elucidate the equilibrium proper-
ties of the monomer-monomer reaction on random cata-
lytic substrates [15]. Here we concentrate on a particular
case in which the model reduces to an exactly solvable
Blume-Emery-Griffiths (BEG) model [16,17] and derive
an exact expression for the disorder-averaged equilibrium
pressure of the two-species adsorbate. We show that at
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reflects a spontaneous symmetry breaking with large
fluctuations and progressive coverage of the entire sub-
strate by either one of the species.

We consider a 2D regular lattice of N adsorption sites
(Fig. 1), which is in contact with the mixed vapor phase of
A and B particles. The A and B particles can adsorb onto
vacant sites and can desorb back to the reservoir. They are
characterized by chemical potentials �A and �B main-
tained at constant values and measured relative to the
binding energy of an occupied site, so that �A;B > 0
corresponds to a preference for adsorption. The A and B
particles have hard cores prohibiting double occupancy of
sites and nearest-neighbor (NN) attractive A� A, B� B,
and A� B interactions of strengths JA, JB, and JAB,
respectively. The occupation of the ith site is described
by a pair ci of Boolean variables ni and mi such that

ci � �ni; mi� �

8>><
>>:

�1; 0�; site i occupied by A;
�0; 1�; site i occupied by B;
�0; 0�; site i empty;
�1; 1�; excluded by hard cores:

(1)

We assign to some of the lattice bonds (solid lines in
Fig. 1) ‘‘catalytic’’ properties such that if an A and a B
particle occupy simultaneously NN sites connected by
such a catalytic bond, they instantaneously react and
desorb, and the product (AB) leaves the system; A and B
particles occupying NN sites not connected by a catalytic
bond harmlessly coexist, and we assume that the reverse
process of a simultaneous adsorption of an A and a B on a
catalytic bond has an extremely low probability and can
be neglected. The ‘‘catalytic’’ character of the lattice
bonds is described by Boolean variables �hiji, where hiji
denotes a pair of neighboring sites i and j,
FIG. 1. A 2D lattice of adsorption sites (small gray circles) in
contact with a mixed vapor phase. Black and white circles
denote A and B particles, respectively. The solid lines denote
‘‘catalytic bonds.’’ (R): configuration in which an instanta-
neous reaction takes place ( %- ) upon which the reactants
leave the system. (NR): NN pair of A and B that do not react
since the sites are not connected by a catalytic bond.

020602-2
�hiji �
�
1; hiji is a catalytic bond;
0; otherwise;

(2)

and we take f�hijig as independent, identically distributed
random variables with the distribution

%��� � q��� � 1� � �1� q�����: (3)

The probability q that a given bond is catalytic equals the
mean density of the catalytic bonds. The two limiting
cases, q � 0 and q � 1, correspond to an inert substrate
and to a homogeneous catalytic one, respectively.

The condition of instantaneous reaction A� B ! ;
together with negligible simultaneous adsorption of an
A and a B on a catalytic bond is formally equivalent to
allowing a NN A� B repulsive interaction of strength
� 
 1, followed by the limit � ! 1, for A� B pairs
connected by catalytic bonds. Hence, in thermal equilib-
rium and for a given configuration � � f�hijig, the parti-
tion function of such a two-species adsorbate is

ZN��� � lim
�!1

X
fckg

exp���H �����; (4)

where ��1 � kBT is the thermal energy, while the
Hamiltonian H ���� � H���� �H0 naturally separates
into a disorder-dependent part,

H���� � �
X
hiji

�hiji�nimj � njmi�; (5)

where the summation extends over all pairs hiji, and a
disorder-independent contribution

H0 � �
X
hiji

�JAninj � JBmimj � JAB�nimj � njmi��

�
XN
i�1

��Ani ��Bmi�: (6)

In what follows we shall focus on situations in which
the disorder in the placement of the catalytic bonds is
annealed. In this case the thermodynamics of the system
is given by the disorder-averaged pressure (in units of the
lattice cell area),

P � P�T;�A;�B� �
1

�
lim
N!1

1

N
lnhZN���i� ; (7)

where h� � �i� denotes the average over all possible real-
izations f�hijig. Once P is known all other thermodynamic
quantities of interest can be obtained by differentiating P
with respect to �A, �B, or T.

Averaging ZN��� in Eq. (4) is straightforward,

hZN���i� �
X
fckg

e��H0 lim
�!1

he��H����i�

�
X
fckg

e��H0

Y
hiji

lim
�!1

�qe����nimj�njmi��1�q�

�
X
fckg

e��H0

Y
hiji

�1�q�nimj�njmi �
X
fckg

e��He; (8)

and yields the ‘‘effective’’ Hamiltonian
020602-2



FIG. 2. Average density of A particles, hnii, and of B par-
ticles, hmii, as function of their common fugacity z above (q �
0:60) and below (q � 0:57) the threshold value ~qq � 1=

���
3

p
for

the concentration of catalytic segments. For clarity, the curves
corresponding to q � 0:60 have been symmetrically shifted up
(hnii) and down (hmii), respectively. The upper inset (logarith-
mic scale) illustrates the scaling behavior hnii � hmii � �z�
zc�

1=8 for z ! zc. The lower inset shows the critical line zc�q�
[Eq. (15)]; the arrow indicates a path of increasing z at fixed q
which crosses the transition line.
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H e � �
X
hiji

f�JAB � ��1 ln�1� q���nimj � njmi�

� JAninj � JBmimjg �
XN
i�1

��Ani ��Bmi�:

(9)

Introducing the ‘‘spin’’ variables �i 2 f0;�1g,

�i �

�
����1; site i occupied by A �B�;
0; site i empty;

(10)

such that ni � ��i � �2
i �=2 and mi � ���i � �2

i �=2, H e
can be cast into the form of the classical Hamiltonian of
the general spin S � 1 model [14],

H e �� J
X
hiji

�i�j � K
X
hiji

�2
i �

2
j � C

X
hiji

��i�2
j � �j�2

i �

�H
XN
i�1

�i � �
XN
i�1

�2
i (11)

with coupling constants

J �
JA � JB � 2JAB

4
�

ln�1� q�
2�

; (12a)

K �
JA � JB � 2JAB

4
�

ln�1� q�
2�

; (12b)

C �
JA � JB

4
; H �

�A ��B

2
;

� � �
�A ��B

2
: (12c)

Thus, in the case of annealed disorder, the A� B ! ;
reaction model under study can be mapped exactly onto
the GS1 model, which has been extensively analyzed [14].
The accumulated knowledge on its critical behavior,
phase diagrams, as well as low- and high-temperature
expansions [14], can be straightforwardly used to eluci-
date the equilibrium properties of the present CAR model
for general values of �A, �B, JA, JB, JAB, and q, as well as
for different types of embedding lattices [15].

In the remaining part of this Letter we focus on the
symmetric case �A � �B and JA � JB, implying C �
H � 0 so that the model reduces to the original BEG
model [16]. Additionally, we set JAB � 0 and consider a
honeycomb lattice and a particular relation between K
and J, for which the 2D BEG model, and hence the
monomer-monomer reaction model under study, can be
solved exactly [17,18].

Following Ref. [18], in the subspace e��K � cosh��J�
the partition function of the 2D BEG model on the honey-
comb lattice may be expressed in terms of the partition
function of a zero-field Ising model on the honeycomb
lattice, which is known in closed form [19]. In this sub-
space the 2D BEG model exhibits an Ising-type phase
020602-3
transition with a line of critical points obeying
tanh��J� � �2� e���=2

���
3

p
[17]. For our model, e��K �

cosh��J� implies

JA � JB � ��1 ln�1� q�: (13)

In the subspace defined by Eq. (13) the disorder-averaged
pressure [Eq. (7)] is given exactly by

�P � 1
2�1� 2e��� � 3

2 cosh��J � � f�J �; (14)

where � � �A � �B, �J � tanh�1�2q=�2� e�����,
and f�J � denotes the known free energy of a spin-1=2
Ising model with NN interaction J on a honeycomb
lattice (see Ref. [19]). Since in this particular case the
exact expression for the average ‘‘magnetization’’ M0 �
h�ii is also known [20], the average densities of A and B
species are straightforwardly calculated as hnii � �M0 �
h�2

i i�=2 and hmii � ��M0 � h�2
i i�=2, where h�2

i i �
z@z��P� and z � e��. Furthermore, the line of critical
points as a function of q [within the subspace defined by
Eq. (13)] where a continuous transition takes place is
given by

��c � � ln�2�q
���
3

p
� 1��: (15)

We now emphasize several features of these results.
(i) For � below its critical value [Eq. (15)] we find hnii �
hmii � 0 (see also Fig. 2). Upon exceeding �c (by in-
creasing the vapor pressure in the reservoirs) one of the
densities (with equal probability) decreases sharply but
continuously to zero while the other one rapidly attains
020602-3
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unity. This reveals a spontaneous symmetry breaking and
implies that the substrate becomes poisoned; i.e., most of
it is covered by either one of the species. If the chemical
potentials �A and �B differ slightly, the transition to the
poisoned state is smeared out but remains detectable.
(ii) The transition can occur only if the mean density q
of catalytic bonds q is sufficiently high, such that q >
~qq � 1=

���
3

p
� 0:577. For q < ~qq , hnii � hmii for all ��,

and both tend to 1=2 as �� ! 1. (iii) �c � 0 for q 2
�1=

���
3

p
;

���
3

p
=2�, which means that in this range of q values

the transition occurs in situations in which adsorption on
the substrate is favored. For q 2 �

���
3

p
=2; 1�, �c < 0, and

hence the transition takes place for the case that desorp-
tion into the reservoir is favored. (iv) There occur large
scale critical fluctuations of the densities of adsorbed A
and B particles upon approaching zc � exp���c� from
above or below (by varying the vapor pressure in the
reservoirs), and the compressibility of the adsorbed phase
diverges as jz� zcj�7=4 for z ! zc and �A � �B, and as
j�A ��Bj

�14=15 for �A ! �B and z � zc [21]. (v) An
analysis of the model on a Bethe lattice (coordination
number % � 3) [15] shows that the case e�K cosh��J� �
1 is not singular, i.e., the transition line discussed
above persists for e�K cosh��J� & 1 and for 1<
e�K cosh��J�< 2.

In conclusion, this study presents an exactly solvable
model of a monomer-monomer A� B ! ; reaction on a
2D random catalytic substrate. This exact solution has
been obtained via a mapping of the partition function of
the two-species adsorbate onto the partition function of a
general spin S � 1 model and by noticing that for certain
relations between the corresponding coupling constants
the latter reduces to an exactly solvable 2D BEG model
[17]. In this case we have determined the annealed
disorder-averaged equilibrium pressure of the two-
species adsorbate and have shown that the system under
study exhibits a second-order (robust in parameter space)
2D Ising-like phase transition if the mean density of the
catalyst is sufficiently large.
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