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Quantum Phase Transition in an Atomic Bose Gas with a Feshbach Resonance
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We show that in an atomic Bose gas near a Feshbach resonance a quantum phase transition occurs
between a phase with only a molecular Bose-Einstein condensate and a phase with both an atomic and a
molecular Bose-Einstein condensate. We show that the transition is characterized by an Ising order
parameter. We also determine the phase diagram of the gas as a function of magnetic field and
temperature: the quantum critical point extends into a line of finite temperature Ising transitions.
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 a �x� a �x� a�x��, where  a�x� and  m�x� annihilate an
atom and a molecule at position x, respectively [17–19].

Bose gases thus have the prospect of observing this phase
transition with an essentially topological character,
Introduction.—One of the most important recent devel-
opments in the field of ultracold atomic gases is the
application of Feshbach resonances. A Feshbach reso-
nance in the scattering amplitude of two atoms occurs
when the total energy of the atoms is close to the energy
of a molecular state that is weakly coupled to the atomic
continuum [1,2]. In the alkali gases of interest, this
coupling is provided by the exchange interaction, and
consequently the magnetic moments of the two atoms
and the molecule differ substantially. As a result, the
energy difference between the molecule and the thresh-
old of the two-atom continuum, known as the detuning �,
can be experimentally tuned by means of a magnetic
field. Moreover, by sweeping the magnetic field from
positive to negative detuning through the Feshbach reso-
nance, it is actually possible to form molecules in the
atomic gas [3–7].

Very recently, it has even been possible to create a
Bose-Einstein condensate (BEC) of molecules in an
atomic Fermi gas with a Feshbach resonance [8–10].
This achievement is of particular importance because it
offers the opportunity for observing a Bardeen-Cooper-
Schrieffer (BCS) transition in a dilute atomic gas [11,12].
The idea here is to start from a pure molecular condensate
and then sweep the magnetic field back to positive detun-
ing to create a much colder atomic Fermi gas than could
have been achieved without the intermediate step of
forming a molecular Bose-Einstein condensate. It is im-
portant to realize that this idea strongly hinges on the fact
that a smooth BEC-BCS crossover exists in this system as
one changes � [13–15]. In this Letter we show that
analogous experiments varying � in an atomic Bose gas
lead to a true phase transition rather than a crossover [16].
The reason for, and the nature of, this phase transition can
be understood as follows.

The argument contains two important ingredients.
The first ingredient is that the coupling between the atoms
and molecules in the gas is provided by an interaction
energy that is proportional to

R
dx� y

m�x� a�x� a�x� �
y y
0031-9007=04=93(2)=020405(4)$22.50 
Such a coupling implies that if the gas contains an atomic
Bose-Einstein condensate, and therefore has a nonzero
value of h a�x�i, the gas must necessarily also contain a
molecular Bose-Einstein condensate and have a nonzero
value of h m�x�i. However, the reverse is not true, and it is
possible for the gas to contain only a molecular Bose-
Einstein condensate.

The second ingredient is that the symmetries of these
two different phases of the gas are different. In the
normal phase the gas is invariant under the phase trans-
formations  a�x� ! ei� a�x� and  m�x� ! e2i� m�x�.
The additional factor of 2 in the transformation of
the molecular annihilation operator follows also from
the above interaction energy and is physically related
to the fact that a molecule consist of two atoms. If the
gas contains both an atomic and a molecular Bose-
Einstein condensate (AC�MC) this U�1� symmetry is
completely broken, and no residual symmetry exists.
However, if the gas contains only a molecular conden-
sate, a residual discrete symmetry remains because
h m�x�i ! h m�x�i for � 
 �. This phase therefore only
breaks the U�1�=Z2 symmetry spontaneously. As a result,
there must exist an Ising-like phase transition between the
state with only a MC and the state with an AC�MC, in
which the residual Z2 symmetry is spontaneously broken.
Note that in the case of an atomic Fermi gas the BCS
phase is characterized by a nonzero value of h a�x� a�x�i.
The BCS phase has therefore the same symmetry as a
molecular Bose-Einstein condensate and only a crossover
occurs.

The existence of the Ising transition for the case of the
Bose gas also becomes clear from a consideration of the
allowed vortices in the two limiting cases. The vortices in
the state with only a MC are quantized in integer multi-
ples of an elementary circulation which is exactly one half
the quantum of circulation in the state with an AC�MC.
Consequently, there is a deconfinement-to-confinement
transition for a pair of elementary vortices in the MC
with increasing detuning [20]. Experiments in the atomic
2004 The American Physical Society 020405-1
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FIG. 1. Phase diagram of a Bose gas with g
���
n

p
=�2 
 1:5�

10�5 near a Feshbach resonance as a function of detuning � and
temperature T. The solid lines represent the critical T for the
transitions to the normal state and the location of the Ising
transition between the phase with only a molecular Bose-
Einstein condensate and the phase with both an atomic and a
molecular Bose-Einstein condensate. The solid lines do not
include the effects of the finite lifetime of the molecules. The
dashed lines show a calculation of the critical T for the various
transitions that includes these effects.
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something which has not so far been possible in
condensed-matter systems.

The phase diagram that we expect on the basis of the
above arguments is shown in Fig. 1. For large positive �,
the molecular energy lies far above the threshold of the
two-atom continuum, and the gas consists essentially
completely of atoms, which Bose-Einstein condense ap-
proximately at the ideal gas critical temperature T 

T0 � �2� 
h2=mkB��n=��3=2��

2=3, where n is the total
atomic density of the gas that is assumed to be a constant
throughout the phase diagram. If we lower � towards
zero, the number of molecules in the gas increases and
consequently the critical T decreases monotonously. For
large negative �, the molecular energy lies far below the
threshold of the two-atom continuum, and the gas con-
sists solely of molecules that condense at the critical
temperature T0=2

5=3. Upon increasing � towards zero,
the number of atoms in the gas increases, and the critical
T for Bose-Einstein condensation decreases again.
Finally, our arguments have shown that by increasing �
at a fixed T below the critical T for Bose-Einstein con-
densation of the molecules, an Ising phase transition to a
phase with both an atomic and a molecular Bose-Einstein
condensate occurs. This occurs always at a negative �, as
we will see next when we discuss in detail the quantitative
determination of the phase diagram.

Negative detuning.—Up to now we have not made a
careful distinction between bare and dressed molecules.
However, for a realistic calculation of the phase diagram,
this distinction is very important. The bare molecule
corresponds to the bound state of the Feshbach problem
in the absence of a coupling with the two-atom contin-
uum, whereas the dressed molecule corresponds to the
bound state of the full problem including that coupling.
As a result, the energy of the dressed molecule is not
equal to the detuning but turns out to be given by �m 


�� �2�
�����������������������
1� 4�=�2

p
� 1�=2, where �2 
 g4m3=4�2 
h6,

and g 
 
h
����������������������������������
2�abg�B��=m

q
determines the coupling be-

tween the atoms and the bare molecules [21]. The latter
can be expressed in terms of the background scattering
length abg, the magnetic field width �B, and the differ-
ence between the magnetic moments of a bare molecule
and two atoms ��, which are the experimentally known
020405-2
parameters of the Feshbach resonance. Furthermore, the
wave function of the dressed molecule is not equal to the
wave function of the bare molecule but contains also
amplitude to be in the two-atom continuum. In detail
we find [22]

j�m;dressedi

����
Z

p
j�m;barei�

X
k

Ckjk;�k;openi; (1)

where the wave function renormalization factor Z obeys
1=Z 
 1� �=2

���������
j�mj

p
. Far from resonance we have that

Z ’ 1, and there is essentially no distinction between the
bare and dressed molecular wave functions. However,
close to resonance, Z becomes very small and the dressed
molecule actually has almost no amplitude to be in the
bare molecular state.

To take the above physics most easily into account, we
introduce creation and annihilation operators for the
dressed molecules. The grand-canonical Hamiltonian
for the gas then becomes
H 

Z
dx y

m�x�
�
�


h2r2

4m
� �m � 2�

�
 m�x� �

Z
dx y

a �x�
�
�


h2r2

2m
���

Tbg
2
 y
a �x� a�x�

�
 a�x�

�
Z
dx

����
Z

p
g� y

m�x� a�x� a�x� �  y
a �x� 

y
a �x� m�x�� �

Z
dx
Tmm

2
 y
m�x� 

y
m�x� m�x� m�x�

�
Z
dxTam 

y
m�x� 

y
a �x� a�x� m�x�; (2)

where Tbg 
 4�abg 
h
2=m, and Tam and Tmm are the T matrices for the scattering of an atom with a dressed molecule and

for the scattering of two dressed molecules, respectively. Near resonance, the latter two T matrices can actually be
expressed in terms of the full atomic scattering length a�B� 
 abg�1� �B=�B� B0�� of the Feshbach resonance at
magnetic field B0, as we show at the end of this Letter.
020405-2
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FIG. 2. Feynman diagrams that determine (a) the interaction
between an atom and a dressed molecule and (b) the interaction
between two dressed molecules.
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To find the phase diagram for negative �, we consider
the phase with only a Bose-Einstein condensate of
dressed molecules and perform a quadratic expansion of
the Hamiltonian around the nonzero expectation value
h m�x�i �

��������
nmc

p
. For atoms with zero momentum, the

resulting Hamiltonian leads to a fluctuation matrix given
by�
��m � �2Tam � Tmm�nmc 4g

����
Z

p ��������
nmc

p

4g
����
Z

p ��������
nmc

p
��m � �2Tam � Tmm�nmc

�
:

This fluctuation matrix has two positive eigenvalues
only if � is sufficiently negative or, more precisely, if
�m <�4g

����
Z

p ��������
nmc

p
� �2Tam � Tmm�nmc. For larger � an

instability arises, which physically leads to the formation
of an atomic condensate in addition to the molecular
condensate that is already present. This condition there-
fore determines the position of the quantum (at T 
 0) or
classical (for T > 0) Ising phase transition. The critical T
for the Bose-Einstein condensation of the dressed mole-
cules is of course obtained from the condition nmc 
 0.

Since both conditions are expressed in terms of the
molecular condensate density nmc, we now need to find
the equation of state of the gas to obtain this condensate
density as a function of � and T. This is complicated by
the fact that the total atomic density of the gas is given by
the sum of the density of atoms and of twice the density
of bare molecules, i.e., not twice the density of the
dressed molecules. Using the techniques derived in
Ref. [19], the calculation can nevertheless be performed
and we find that in a good approximation the total density
of bare molecules is

nm 
 Znmc �
1

V

X
k

	
�k � 2Tmmnmc

2 
h!k

1

e 
h!k � 1

�
�k � 2Tmmnmc � 2 
h!k

4 
h!k



; (3)

with �k 
 
h2k2=2m and 
h!k 

��������������������������������������
�2k=4� �kTmmnmc

q
the

molecular Bogoliubov dispersion. For the atomic density,
we find in a similar manner that

na 

1

V

X
k

	
2�k � �m � �2Tam � Tmm�nmc

2 
h!k

1

e 
h!k � 1

�
2�k � �m � �2Tam � Tmm�nmc � 
h!k

4 
h!k



;

(4)

where the dispersion for the atoms obeys 
h!k 
��������������������������������������������������������������������������������������������������
��k � �m=2� �Tam � Tmm=2�nmc�

2 � 4g2Znmc

p
. Note

that this dispersion in general has a gap but becomes
gapless exactly at the critical condition for the Ising
transition, as expected.

Positive detuning.—At positive � no truly stable mo-
lecular state exists and the previous approach in principle
does not apply. That approach was based on the fact that,
for negative �, the density of states for the bare molecules
020405-3
contained a delta function at the energy �m and with
strength Z that corresponded to the dressed molecules.
For positive �, the density of states consists, however,
only of a single broad peak [21]. Approximating that
broad peak by a delta function at the energy where the
density of states has a maximum, we can again use the
Hamiltonian in Eq. (2), but now with

�m 

1

3

0
@��

�2

2
�

�����������������������������������
�4

4
� �2�� 4�2

s 1
A
 �2

�2 �O��3�

(5)

and Z 
 1. In this approximation we are neglecting the
finite lifetime of the bare molecules, which is due to the
fact that these molecules can now decay into the two-
atom continuum. At the end of this Letter we, however,
also discuss a calculation that includes these finite life-
time effects exactly [19]. The result of that calculation is
indicated by the dashed line in Fig. 1, which shows that
the above approximation is indeed rather accurate. Since
for positive �we need to determine only the critical T for
Bose-Einstein condensation of the atoms and molecules,
we here consider only the normal phase of the gas. At the
critical temperature Tc, the atomic density is therefore
just na 
 n�Tc=T0�3=2, whereas the density of molecules
equals nm 
 2

���
2

p
n�Tc=T0�

3=2g3=2�e
� �m�=��3=2�, where

g3=2�z� is the usual Bose function. The desired critical T
now follows from n 
 2nm � na.

Discussion and conclusions.—Up to now we have left
the molecule-molecule interaction and the atom-molecule
interaction unspecified. Near resonance they are, how-
ever, in first approximation determined by the Feynman
diagrams given in Fig. 2. Evaluating these diagrams at
zero external momenta and frequencies, we find that
Tam 
 8g2Z=j�mj. Close to resonance we have that Z 

4� 
h4=g2m2a and j�mj 
 
h2=ma2. We thus conclude that
the scattering length for this process is proportional to
the atom-atom scattering length as aam 
 32a=3. Using a
similar procedure, the scattering length for the molecule-
molecule interaction can be shown to be amm 
 4a. In the
case of an atomic Fermi gas, we find in the same manner
that aam 
 8a=3 and amm 
 a. This may be compared to
similar results obtained recently by Petrov et al. for this
case [23].

In the calculation of the phase diagram presented in
Fig. 1, we have actually not included the mean-field
020405-3
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effects due to the atom-molecule and molecule-molecule
interactions. The reason is that these mean-field effects, if
we also take into account the unitarity limit of the T
matrix, are estimated to lead only to relatively small
shifts. Qualitatively, the most important effect is that
the Ising transition is, near T 
 0, shifted to somewhat
higher values of �. In particular, the transition tempera-
tures for Bose-Einstein condensation are hardly affected.
As mentioned previously, we have performed a calcula-
tion of the various critical T as a function of �, which
includes both the effects of the finite lifetime of the
molecule at positive � as well as the rogue-dissociation
process [24] for negative �. The results are presented by
the dashed line in Fig. 1. Note that for negative � these
effects are non-negligible only in a small region close to
resonance due to the fact that Z becomes very small,
which implies that there is a rather large spectral weight
in the density of states at positive energies. In addition, �m
becomes very small, which implies that the positive en-
ergy states also get thermally populated. For positive �
the results are affected more because of the fact that the
finite lifetime of the molecules leads to a substantial
broadening of the density of states, which considerably
affects the total number of bare molecules in the gas. In
future work we want to explore the possibility that,
sufficiently close to resonance, the continuous Ising tran-
sition is actually preempted by a first-order phase tran-
sition by such effects.

Field theories for critical fluctuations near the Ising
transitions at T 
 0 and T > 0 can be developed by
standard methods, using that in the states with
h mi � 0 the Ising order parameter # / i� a �  y

a �.
These field theories have the familiar #4 form, except
that at T 
 0 there is also a marginal coupling to dy-
namic density fluctuations of the superfluid which appar-
ently drives the transition weakly first order [25]. The
critical precursors of the transition lead to a large density
of states for collective low-energy excitations, which
strongly damps single-particle excitations. Observation
of such enhanced sources of dissipation may serve as an
experimental signature of the Ising transition. A possibly
more straightforward way to observe the Ising transition
is to first make a molecular Bose-Einstein condensate at
sufficiently negative �. Then we slowly sweep the mag-
netic field to resonance and measure at each field the
atomic condensate density. In this way it is possible to
avoid the large decay of the gas due to inelastic atom-
molecule collisions [7] because the number of atoms
becomes large only above the Ising transition.

While the writing of this Letter was being com-
pleted, we became aware of the work of Radzihovsky
et al. [26], who also point out the existence of the Ising
phase transition, but use the Timmermans model [18] to
determine the phase diagram. This work is supported by
the Nederlandse Organisatie voor Wetenschaplijk Onder-
zoek (NWO) and the U.S. National Science Foundation
Grant No. DMR-0098226.
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