
P H Y S I C A L R E V I E W L E T T E R S week ending
9 JULY 2004VOLUME 93, NUMBER 2
Particle Beams Guided by Electromagnetic Vortices: New Solutions of the Lorentz,
Schrödinger, Klein-Gordon, and Dirac Equations

Iwo Bialynicki-Birula*
Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

(Received 11 February 2004; revised manuscript received 15 March 2004; published 9 July 2004)
020402-1
It is shown that electromagnetic vortices can act as beam guides for charged particles. The confine-
ment in the transverse directions is due to the rotation of the electric and magnetic fields around the
vortex line. A large class of exact solutions describing various types of relativistic beams formed by an
electromagnetic wave with a simple vortex line is found both in the classical and in the quantum case.
In the second case, the motion in the transverse direction is fully quantized. Particle trajectories trapped
by a vortex are very similar to those in a helical undulator.

DOI: 10.1103/PhysRevLett.93.020402 PACS numbers: 03.65.Pm, 41.75.Ht
m ������� � e f�������� _������; (3) Since the phase of the wave field changes in proper time
Electromagnetic waves with vortices have been exten-
sively studied both theoretically and experimentally. This
field of research has became known as singular optics [1].
In this work I take these studies one step further and
analyze the motion of charged particles in the vicinity
of a vortex line. I shall consider the simplest possible
solution of Maxwell equations with a straight vortex line
and show that this configuration of the electromagnetic
field acts as a perfect beam guide for charged particles. I
study these nonspreading beams in the classical case,
when the relativistic particle trajectory is determined by
the Lorentz equations, and also in the quantum case,
when the wave function describing the beam obeys the
Schrödinger, Klein-Gordon, or the Dirac equation. In the
classical and in the quantum case, I exhibit analytic
solutions that enable one to fully understand the intricate
dynamics of these beams.

The electric and magnetic field vectors of my model
Maxwell field are

E�x; y; z; t� �B0!�f�x; y; z; t�; g�x; y; z; t�; 0�; (1a)

B�x; y; z; t� �B0k�� g�x; y; z; t�; f�x; y; z; t�; 0�; (1b)

where B0 is the field amplitude measured in units of the
magnetic field and

f�x; y; z; t� � x cos�!t�� � y sin�!t��; (2a)

g�x; y; z; t� � x sin�!t�� � y cos�!t��; (2b)

where t� � t� z=c. This configuration of the field is the
simplest example of the EM field with a vortex line [2,3].
The solution of the Maxwell equations given by Eqs. (1) is
not as artificial as it may look at a first glance. It is a fairly
good approximation (near the z axis and not far from the
waist compared to the Raleigh range) to a realistic cir-
cularly polarized paraxial Laguerre-Gauss beam with
n � 0 and m � 1.

The Lorentz equations of motion
0031-9007=04=93(2)=020402(4)$22.50 
for a particle moving in the field (1), expressed in terms of
the components ��; �; �; �� of the four-vector �����, have
the form (for the sake of brevity, I shall occasionally
drop the dependence on the proper time �)

��� �!c !f��; �; �; ��� _��� _��=c�; (4a)

��� �!c !g��; �; �; ��� _��� _��=c�; (4b)

��� �
!c !
c

� _��f��; �; �; �� � _��g��; �; �; ���; (4c)

c ��� �
!c !
c

� _��f��; �; �; �� � _��g��; �; �; ���; (4d)

where the dots denote derivatives with respect to � and
!c � eB0=m is the cyclotron frequency. These equations
are nonlinear but they can be explicitly solved owing to
conservation laws.

By subtracting Eq. (4c) from Eq. (4d), one obtains ����
���=c � 0 and this leads to the first conserved quantity

_��� _��=c �
������������������������������������������������
1� � _��2 � _��2 � _��2�=c2

q
� _��=c � E

� const1: (5)

Apart from the factor mc2, this constant is the light-front
energy—the conjugate variable to t� � t� z=c

E �
1� vz=c����������������������
1� v2=c2

p �

���������������������������
m2c4 � p2c2

p
� pzc

mc2
: (6)

Without any loss of generality one may assume that
��0� � 0 � ��0� and then Eq. (5) integrated with respect
to � yields

�� �=c � E �: (7)

Thus, in this case, the proper time is proportional to the
light-front variable. The second constant of motion is
obtained by combining Eqs. (4a)–(4c) and it reads

_�� �
1

2cE
� _��2 � _��2� �

c
2

�
1

E
� E

�
� const2: (8)
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with frequency !E, I shall incorporate E into ! and
define the effective frequency  � E!.

Owing to Eq. (5), the transverse motion separates from
the longitudinal motion and the equations for � and �
may be solved first. This task is made easier by trans-
forming Eqs. (4a) and (4b) to the frame rotating (in
proper time) with the angular velocity =2 around the
z axis which amounts to replacing � and � by the new
variables

���� � ���� cos��=2� � ���� sin��=2�; (9a)

���� � ����� sin��=2� � ���� cos��=2�: (9b)

The equations of motion for � and � read

��� � _��� �2=4���!c�; (10a)
��� �� _��� �2=4���!c�: (10b)

These equations result from the following Hamiltonian:

H �
1

2m
�p2

� � p2
�� �

m!2
c

2
��2 � �2�

�

�
!c �



2

�
�p� �

�
!c �



2

�
�p�: (11)

Despite the quadratic form of the Hamiltonian, it is not
exactly a harmonic oscillator—the frequencies of the
oscillations depend through E on the initial conditions.
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Still, this Hamiltonian can be expressed in terms of the
complex eigenmode amplitudes a� and a	� (classical
counterparts of the annihilation and creation operators),

H � � a	�a� �� a	�a�; (12)

where � � 
�������������
1� �

p
=2 and � � 4!c= is a dimen-

sionless parameter that controls the particle behavior in
the xy plane. The amplitudes a� have the form

a� �
1

2

�������
��
�

r �
p� � ��� i

p� � ��
��

�
; (13a)

a� �
1

2

�������
��
�

r �
p� � ��

��
� i�p� � ���

�
; (13b)

where � � jeB0j and �� �
�������������
1� �

p
. The minus sign in

the diagonal form of the Hamiltonian (12) indicates that
the beam dynamics in the transverse plane is governed
by the same combination of the attractive/repulsive oscil-
lator forces and the Coriolis force as one encounters for a
particle in the Paul trap [4], an electron Trojan wave
packet in an atom [cf. Eq. (7) of Ref. [5] ] or Trojan
asteroids in the Sun-Jupiter system [5].

The general solution for ���� and ���� is obtained by
solving Eqs. (10) in terms of eigenmodes and then un-
doing the rotation (9). The final expression for the motion
of particles in the plane perpendicular to the vortex line
can be compactly written in the complex form
���� � i���� � ei�=2��iD�� � A� sin���� � �B�� � iC� sin���� � �iA�� �D� cos����

� �C�� � iB� cos�����; (14)
where the constants A;B;C;D depend on the initial val-
ues of the transverse positions and velocities

A � ��0 � _��0=2!c�=��; B � _��0=2!c; (15a)

C � ��0 � _��0=2!c�=��; D � _��0=2!c: (15b)

For j�j< 1 one obtains bounded oscillations around the
vortex line with four characteristic frequencies: � �
=2 and � �=2 and for j�j > 1 one has runaway
solutions with exponential growth. The motion along the
z axis is obtained from Eq. (8) by a straightforward
integration. The resulting formula for ���� has two
parts—a part with oscillating terms and a linear part
in �,
���� �
�2!�D2 � A2� sin�2���

16c��
�
�2!�B2 � C2� sin�2���

16c��
�
�2!AD�1� cos�2����

8c��

�
�2!CB�1� cos�2����

8c��
�
c�
2

�
1

E
� E �

E�2!2

8c2
�A2 � B2 � C2 �D2�

�
: (16)
Depending on the sign of the linear term, the guiding
center of the beam may follow the electromagnetic wave
or move in the opposite direction. By a special choice of
initial conditions one may even get rid of the linear term
altogether in which case the longitudinal motion will also
be bounded, but it requires fine tuning. This complex
behavior is a purely relativistic effect. In the nonrelativ-
istic limit, the motion in the z direction is free, not
affected by the wave at all, ��t� � vzt. In Fig. 1, I show
two trajectories of electrons for different initial condi-
tions. These trajectories are very similar to those in a
helical undulator (an arrangement of permanent magnets
used to produce circularly polarized radiation). In the
present case, the role of permanent magnets is played
by an electromagnetic wave with a vortex line and the
beam confinement is due to a totally different (Trojan)
mechanism.

I shall start the analysis of the quantum-mechanical
problem with the Klein-Gordon (KG) equation. The EM
field (1) may be derived from the vector potential

A �x; y; z; t� � B0��g�x; y; z; t�; f�x; y; z; t�; 0�: (17)

As seen from the analysis of the classical solutions, it is
020402-2



FIG. 1. Two trajectories of electrons injected into the wave
field (1) with B0 � 10�3 T and ! � 2.� 109 s�1. The initial
longitudinal momentum pz of the electron is in both cases
25 keV=c but they have different transverse momenta. The
narrow trajectory has px � 5 keV=c while the wide one (wig-
gles on this trajectory are real) has px � 50 keV=c. The size of
the box measured in wavelengths 2.c=! is 1 1

2 � 1 1
2 � 2 1

2 .
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preferable to use the coordinates x, y, and t�. The KG
equation in these coordinates reads

4

c2
@�@� �

�
�? �

e2

�h2
A2 � 2i

e
�h
A  r�

m2c2

�h2

�
 ;

(18)

where @� � @=@t�. Since the variable t� does not appear
in this equation, one may seek its solutions in the form

 �x; y; t�; t�� � e�ic
2�Mt��m2t�=M�=2 �h ~  �x; y; t��: (19)

An additional phase factor, dependent on t�, has been
introduced to remove the mass term. The essential depen-
dence on t� is still contained in the wave function ~  . The
function ~  �x; y; t�� obeys the following equation:

i �h@� ~  �

�
�

�h2

2M
�? �

M2
c

2
�x2 � y2�

�
~  

� i �hc��x@y � y@x� cos�!t��

� �x@x � y@y� sin�!t��� ~  ; (20)

where �? is the transverse part of the Laplacian and
c � eB0=M. This equation is exactly the same as a
nonrelativistic Schrödinger equation except that the role
of the mass m is played by the separation constant M and
the time parameter is replaced by the light-front variable
t�. Therefore, everything that one can say about the
solutions of the Eq. (20) applies to the solutions of the
Schrödinger equation. Upon transforming Eq. (20) to a
comoving frame by the substitution
020402-3
~  � exp

�
�
!t�
2

�x@y � y@x�
�
*; (21)

one finally obtains

i �h@�* �

�
�

�h2

2M
�? �

M2
c

2
�x2 � y2�

�
*

� i �h��c �!=2�x@y � �c �!=2�y@x�*:

(22)

By rearranging the terms, one may establish that the
particle in this frame moves effectively under the influ-
ence of the constant magnetic field B � �0; 0;M!=e�
and an additional repulsive quadratic potential V �
��M!2=8���2

�x
2 � �2�y2�.

All stationary solutions of Eq. (22) are most easily
classified with the use of the creation and annihilation
operators. These operators diagonalize the Hamiltonian

ĤH � �p̂p2
x � p̂p2

y�=2M�M2
c�x̂x

2 � ŷy2�=2

� �c �!=2�x̂xp̂py � �c �!=2�ŷyp̂px (23)

and are obtained from the classical amplitudes (13) by
the replacements

a� !
���
�h

p
âa� ; a	� !

���
�h

p
âay�; (24a)

��;�; p�; p�� ! �x̂x; ŷy; p̂px; p̂py�: (24b)

This leads to the following form of the Hamiltonian:

ĤH �
�h!
2

�
��

�
âa	�âa� �

1

2

�
� ��

�
âa	�âa� �

1

2

��
: (25)

Thus, in contrast to the Volkov solution in the plane wave
EM field [6], the motion in the transverse direction is
fully quantized. In contrast to the motion in a constant
magnetic field, the particle is localized near the z axis.
Different normalization of the classical and quantum
Hamiltonian is due to the fact that the first one generates
the evolution in proper time, while the second one gen-
erates the evolution in the t� variable. These two parame-
ters differ by the scaling factor E. The quantum theory
becomes consistent with the classical one when M=m is
identified with E. It means that M=m � =! and, as a
result, the value of � encountered in quantum theory
becomes equal to the classical one (4!c= � 4c=!),
as it should be.

Having diagonalized the Hamiltonian, one may gener-
ate the whole Fock space of stationary solutions. They are
obtained by acting on the fundamental state *0 with the
creation operators. The fundamental state is the one an-
nihilated by both operators âa�. Solving two simple dif-
ferential equations âa�*0 � 0, one obtains

*0�x; y� � N exp��x2=d2� � y2=d2� � ixy=d2�; (26)

where the parameters d� and d are given by

d2� �
�h
�
1� ����

��
; d2 �

�h
�
1� ����

1� ����

: (27)
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The wave functions of the Fock states are polynomials in
x and y multiplied by the Gaussian (26). In the laboratory
frame these solutions are not stationary since the beams
do not exhibit rotational symmetry around the z axis
(d� � d�). In particular, the fundamental solution takes
on a form of a rotating helix.

There is also a plethora of nonstationary solutions of
Eq. (22). First, there are those that correspond directly to
classical trajectories—the analogs of coherent states. The
fundamental solution (26) corresponds to a trajectory
which just sits on the vortex line, but one may easily
obtain solutions of the KG equation representing all other
classical trajectories. According to a general scheme [7]
valid for all quadratic Hamiltonians, displacing any so-
lution of the KG equation by the solutions of the classical
equations of motion leads to new solutions. Applying such
displacements to the solution (26), one obtains

*�x; y; t�� � N���ei�xp�����yp�����= �h

�*0�x� ����; y� �����; (28)

where � � t�=E and the center-of-mass trajectories are
obtained by solving the Hamilton’s equations of motion
that follow from (11). The time-dependent phase of the
normalization constant is equal to the classical action [7].
To obtain the solution of the original equation, one must
transform the wave function from the comoving frame
back to the laboratory frame applying the inverse trans-
formation to (21). Only then one obtains the quantum-
mechanical counterparts of the classical trajectories.

Solutions based on a rigid Gaussian—the analogs of
coherent states— do not exhaust all possibilities. Since
the center of mass motion of the Gaussian wave packet
decouples from its internal motion, one may easily gen-
erate solutions based on oscillating Gaussians—the ana-
logs of squeezed states. The Gaussian parameters d� and
d for such states are functions of t�. These states do not
have direct classical counterparts and their complete
analysis will be given elsewhere.

The solution of the Dirac equation proceeds along
similar lines. I begin with rewriting the Dirac equation
in the electromagnetic field (1)

i �h@t� � �c�  ��i �hr� eA� � �mc2��; (29)

as a set of two coupled equations for the two-component
wave functions

2i �h@��� � c�mc/z � �?  �i �hr� eA����; (30a)

2i �h@��� � c�mc/z � �?  �i �hr� eA����; (30b)

obtained with the use of the projections P� � �1� �z�=2

� � �P� � P��� � �� ���: (31)

The dependence on the variable t� can again be separated
by the same substitution (21), leading to

Mc ~��� � �mc/z � �?  �i �hr� eA�� ~���; (32)
020402-4
�
2i �h@� �

m2c2

M

�
~��� � c�mc/z � �?  �i �hr� eA�� ~���:

(33)

The first equation enables one to express ~��� in terms of
~��� and leads to Eq. (20) for ~���. Again, as in the case of
the KG equation, the dependence of the potential on t�
may be eliminated by the substitution (19) and the equa-
tion for �� can be reduced to the same Eq. (22) as for a
spinless particle. Still, the spin does play a role in the
Dirac particle dynamics. Since the transformation to
the comoving frame should also involve the spin part,
the proper transformation rule, instead of (21), is now

~��� � exp

�
�
!t�
2

�x@y � y@x � i/z=2�
�
��: (34)

Finally, the wave equation for �� in the comoving frame

i �h@��� �

�
�

�h2

2M
�? �

M2
c

2
�x2 � y2� �

�h!
4
/z

�
��

� i �h
��

c �
!
2

�
x@y �

�
c �

!
2

�
y@x

�
��

(35)

differs from Eq. (22) only by a simple spin term.
Everything that has been said before about stationary
solutions of the KG equation applies with almost trivial
changes to the Dirac equation.

There are two properties of the solutions of the wave
equations described here that might lead to new effects:
the quantization of the transverse motion and the break-
ing of the rotational symmetry. This may help to observe
the rotational frequency shift predicted some time ago [8]
that depends crucially on these features.
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