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We present results on numerical simulations of an atomistic system undergoing plastic shear flow in
the athermal, quasistatic limit. The system is shown to undergo cascades of local rearrangements,
associated with quadrupolar energy fluctuations, which induce system-spanning events organized into
lines of slip oriented along the Bravais axes of the simulation cell. A finite size scaling analysis reveals
subextensive scaling of the energy drops and participation numbers, linear in the length of the
simulation cell, in agreement with the observed real-space structure of the plastic events.

DOI: 10.1103/PhysRevLett.93.016001 PACS numbers: 83.50.–v, 62.20.Fe, 62.20.Mk, 81.40.Lm
0.15 0.155 0.16 0.165 0.17ε

1656

1658

1660

1662

U

lates during a shear-induced collision with a saddle point.
The deformation of an amorphous material thus involves

FIG. 1 (color online). Potential energy as a function of strain
during quasistatic shear of a 200� 200 system.
The recent years have seen an important number of
experimental, numerical, and theoretical studies of plas-
ticity in amorphous materials. The microscopic picture
of plastic deformations which emerges from these studies,
however, is still incomplete —at best, fragmented.
Numerical evidence that plastic deformation involves
heterogenous displacements of molecules led, early on,
to the concept of ‘‘shear transformation zones,’’ which
are expected to play, for amorphous solids, the role of
defects in crystals [1–3]. Most theoretical models of
plasticity rely on this idea and, following Eshelby [4],
on the expectation that elementary shear transformations
are associated with quadrupolar energy fluctuations.
Theoretical works indicate that the existence of quadru-
polar elastic fields, and the consequent long-range inter-
actions between shear transformation zones, can induce
strain localization and fracture in amorphous materials
[5–7]. Although quadrupolar energy fluctuations have
been observed in a numerical model of dry foams [8],
they have never been seen in molecular systems.

This line of research should be contrasted with the
phase space interpretation of plastic deformation recently
proposed by Malandro and Lacks [9], on the basis of the
inherent structure formalism. These authors study shear
induced changes in the potential energy landscape, and
the consequences of such changes on the macroscopic
mechanical behavior of glasses. In order to isolate these
effects, Malandro and Lacks consider the quasistatic
deformation of an amorphous material at zero tempera-
ture, a protocol which has been used since early numeri-
cal studies as a means to bypass intrinsic limitations of
molecular dynamics algorithms [1]. For small deforma-
tions, the system follows shear induced changes of a local
minimum (inherent structure) in the potential energy
landscape. Elementary catastrophic events occur when
the local minimum in which the system resides annihi-
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a series of reversible (elastic) branches intersected by
plastic rearrangements (see Fig. 1).

The inherent structure formalism provides a precise
definition of an elementary plastic rearrangement, but
several questions arise about the spatial organization of
these transitions: Are plastic events related to shear trans-
formation zones and quadrupolar energy fluctuations? Do
they involve spatially localized dynamical structures? If
not, how do these structures scale with system size?
Conflicting answers to these questions can be found in
the literature. From measurements of participation ratio,
Malandro and Lacks indicate that the elementary rear-
rangements they observe are localized [9]. Durian and
co-workers, for a model of foam, observe a power-law
distribution of energy drops at small strain rates, but with
a system-size independent cutoff, indicating that no scal-
ing behavior is to be seen, unless at a very specific point in
the jamming phase-diagram [10]. A contradictory view-
point is supported by the observations by Yamamoto and
Onuki of increasing length scale suggesting the emer-
gence of delocalized events, and critical behavior in the
low-temperature, low strain-rate limit [11].

In this Letter, we study spatial organization of elemen-
tary transitions between inherent structures in quasistatic
shear deformation, using the soft-sphere interaction po-
tential used by Durian [12]. This is the first time a
quasistatic numerical procedure has been used with this
potential. With this model we observe (i) quadrupolar
energy fluctuations and cascades of these during single
transitions between inherent structures, (ii) elongated,
2004 The American Physical Society 016001-1
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FIG. 2. Potential energy and sum of the squares of the forces
as the system progresses through the minimization algorithm
during the event circled in Fig. 1, above.
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cracklike events that span the whole shear cell, and
(iii) we measure the distribution of energy drops and
participation ratios and show that the size of typical
events scales linearly with the length of the simulation
cell. We thus show that scaling behavior is to be found in
the quasistatic limit, and that it is associated with a
cascade of spatially correlated quadrupolar energy fluc-
tuations, reminiscent of theoretical considerations [7].

We perform numerical experiments in two dimensions
using simple shear, or so-called Lees-Edwards, bounda-
ries. Particles interact through the soft sphere-potential
[12]: Uij �

1
2 k�1� dij�2, for dij � 1, and zero for dij > 1,

where dij � 2�k ~xxi � ~xxjk�=�Di �Dj�, with Di, the
diameter of particle i. k, being the only energy scale in
the problem is set to unity. In order to prevent crystal-
lization, a binary mixture is used with DL � 1;
DS � DL�sin

�
10 = sin

�
5�; NL=NS � 	�1�

���
5

p
�=4� [3] where

NL�NS� is the number of large (small) particles. The
athermal, quasistatic shear algorithm consists of two
parts. First the simulation cell is deformed by a small
amount with particle positions fixed in reciprocal space
(i.e., fixed relative to the Bravais axes of the simulation
cell), producing an affine deformation in real space. Next
the potential energy of the system is minimized with the
shape of the simulation cell held fixed resulting in cor-
rections to the affine deformation. The minimization is
terminated when no component of force on any particle
exceeds 10�8. Physically, the quasistatic algorithm cor-
responds to a material which is being sheared in a much
shorter time than the thermally induced structural re-
laxation time, but a much longer time than any micro-
scopic times: �micro �

1
_�� � �struc.

The initial sample is prepared with a standard conju-
gate gradient minimization applied to a random state. A
fixed area simulation cell with a packing fraction of 1:0 is
used for all systems. This density, well above the random
close packing limit, was originally thought to preclude
the emergence of nonlocalized structures [10]. We use a
strain step of size 10�4 for all simulations. Results will be
presented for three ensembles of systems (with sizes:
L2 � 12:5� 12:5, 25� 25, and 50� 50) and also one
single 200� 200 system.

Proceeding with a discussion of the single 200� 200
system, Fig. 1 shows the potential energy of the relaxed
configurations as a function of the applied shear strain for
a small interval of strain from 0:15 to 0:17. The curve
is composed of continuous segments, broken up by dis-
continuous drops. Malandro and Lacks [9] have demon-
strated that each discontinuity arises from the destruction
of a potential energy minimum induced by the imposed
shear strain. In agreement with them, we find that the
system is microscopically reversible upon changing the
sense of the strain during the continuous segments, but
becomes irreversible across the discontinuities which
constitute the fundamental plastic events.

Next we look at the energy relaxation during a typical
plastic event, which is circled in Fig. 1. The energy and
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sum of the squares of the forces during the conjugate
gradient descent for this single energy minimization are
shown in Fig. 2. In these plots, the horizontal axis repre-
sents the amount of progress through the conjugate gra-
dient algorithm. We checked in smaller systems that
minimization via integrating the equations of steepest
descent yields similar curves. In this latter case, the
horizontal axis can be directly interpreted as time, but
steepest descent cannot be used in large systems due to its
intrinsic inefficiency. In steepest descent dynamics, the
time derivative of the energy is precisely the sum of the
squares of the forces, and this relation holds reasonably
well for our conjugate gradient trajectories. Figure 2
shows plateaus in the energy, which correspond to con-
figurations where the forces are small and hence are very
close to being mechanical equilibria. These configura-
tions are quasiequilibria: deficient equilibria, each of
which allows for an escape into a new quasiequilibrium
with lower energy. The system cascades through a series
of quasiequilibria of decreasing energy until finally ar-
resting in a basin which satisfies the stopping criterion.

The observation of these transitions suggests that a
typical plastic event, as circled on Fig. 1, might be de-
composed into elementary subevents. Figure 3(a) shows
the resulting change in potential energy which occurs
during the first force peak (in Fig. 2). The quadrupolar
pattern is apparent. It is the first time such a field has been
observed in an atomistic simulation. We emphasize that
the energy dissipation field shown in Fig. 3(a) corresponds
to a single elementary subevent and contrast this with the
work of Kabla and Debrégeas [8] who observe such a
quadrupolar field in a mechanical film model only after
averaging over many plastic events. We observe these
quadrupoles generically during the onset of other typical
events like the one circled in Fig. 1, however, after the
onset the situation becomes more complex as a cascade is
initiated in which the system proceeds through a series of
such elementary subevents. The spatial signature of
each elementary subevent is, of course, noisy and, as the
016001-2



FIG. 3 (color online). (a) The change in potential energy
during the first force peak in Fig. 2. The color scale is linear
with pure white (black) corresponding to a local decrease
(increase) in energy per unit area equal to 5� 10�4. The
orientation of this quadrupole is precisely what one would
expect based on the direction of the principle axes of the
applied shear strain. (b) The local relative displacements (de-
fined as the displacement of a particle with respect to the
average displacement of its neighbors) that result from the
entire cascade circled in Fig. 1. The black line is a guide to
the eye oriented along the oblique Bravais axis. The particles
inside the circled cluster are those which move during the first
peak in the forces from Fig. 2 and produce the quadrupolar
pattern shown in (a).

P H Y S I C A L R E V I E W L E T T E R S week ending
2 JULY 2004VOLUME 93, NUMBER 1
cascade proceeds, several elementary subevents may oc-
cur concurrently and overlap in space. These effects con-
tribute to an increasingly complicated energy dissipation
field in which it is often difficult to disentangle elemen-
tary quadrupolar patterns. Our observations, however,
are consistent with viewing every cascade as a super-
position of quadrupolar fields, each associated with an
elementary subevent.

Turning to the spatial organization of the subevents
into a cascade, the local relative displacements of each
particle are drawn in Fig. 3(b), where the particles asso-
ciated with the onset are circled. In this picture, nonaffine
rearrangements cluster along the oblique Bravais axis of
the simulation cell. We observe similar cracklike patterns
generically in plastic events, aligned preferentially along
the oblique or nonoblique (horizontal) Bravais axes. (We
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FIG. 4 (color online). (a),(b) Distribution of participation number
Scaling of the average participation number and energy drop with
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emphasize that the geometry of the periodic cell breaks
invariance under global rotations.) These patterns are
reminiscent of those observed by Abd el Kader and
Earnshaw [13] and arise in mesoscopic models of plas-
ticity due to the interactions of local shear transforma-
tions mediated by quadrupolar fluctuations in the elastic
field [4–7]. We emphasize, however, that the patterns we
observe here are certainly distinct from persistent shear
bands: they are transient events which occur during a
single, infinitesimal strain step. The location and orienta-
tion of these patterns fluctuate as the system is sheared,
and by no means can we identify the emergence of any
stationary heterogeneous deformation field, as in some
molecular simulations [14].

The existence of nonlocalized dynamical structures is
consistent with the observation by Yamamoto and Onuki,
[11] in molecular dynamics simulations of glass forming
systems, of an increasing correlation length in the limit
where first temperature and then strain rate go to zero.
They claim that their data is consistent with the existence
of critical behavior in this limit, but were unable to access
the putative critical point due to inherent limitations in
the molecular dynamics algorithm. Our algorithm is
locked precisely at the T ! 0, _�� ! 0 limit, which enables
us to perform finite-size scaling analysis at this point.
Before proceeding, we must emphasize that we study here
a different molecular model which was not expected to
display nonlocalized structures [12]. Moreover, we now
show that the cracklike patterns we observe are respon-
sible for the emergence of specific types of scaling which
were not identified in previous numerical works.

Results for the steady-state distribution of energy drops
and participation number (defined conventionally as [9]P

n
i�1��i=�max�

2, where �i is the distance traveled by
particle i) are given in Fig. 4 for different system sizes.
We first examine the distribution of participation num-
bers N. We find a clear increase of the average with the
linear system size hNi � L, and a corresponding shift in
the distribution. This scaling is consistent with the as-
sumption that the dominant events are system spanning
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and energy drops for systems of lengths, 12:5,25,and 50. Insets:
system length.
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faults of length L with a typical transverse length scale a
which does not depend on system size.We next look at the
distribution of energy drops: it is well described by a
power law with an exponential cutoff at large events.
The power seems to be slightly smaller for our largest
system, and ranges from 0:7 to 0:5, which is in rough
accord with earlier results [10,12]. However, as was the
case with the participation number, we observe dramatic
system size effects, with the average energy and the cutoff
increasing linearly with L. This scaling is consistent
with the idea that the energy dissipated during a plastic
event scales like h�Ei � E0hNi � E0L, where E0 is the
elementary energy released per quadrupolar fluctuation.
We also checked that the average drop in the shear stress,
�xy �

:
�1=2L2�

P
hiji�Fij�x�rij�y, scales like h��xyi �

1
L2 h�Ei � 1

L . This may explain recent surprising experi-
mental results [15].

Our observations differ from previous claims found
in the literature. The distribution of participation numbers
was studied by Malandro and Lacks for a three-
dimensional model of a glass [9]. These authors concluded
that the average participation number became indepen-
dent of system size for large systems, but their data only
disfavors an extensive (L3) scaling. From our observa-
tions, we expect that, in three dimensions, plastic events
are likely to organize into fault planes: in such a case, the
scaling would become hNi � L2, which is also consistent
with Malandro and Lacks’s data [9]. Here we come to an
important point: the nonextensivity of the participation
number does not mean that structures are localized, as
subextensive, system-spanning, structures may emerge.

Our conclusion also differs from that of Tewari et. al.
[10], on two-dimensional models of foams. We believe
this discrepancy originates from a subtle consequence of
their use of finite strain rate simulations. In quasistatic
shear, the respective time scales of plastic events and
shear are completely separated. However, the cracklike
patterns we observe result from cascading subevents, as
information propagates through the system; the plateaus
in Fig. 2 correspond to times when information propa-
gates with little dissipation. At finite strain rate, the
spatial development of plastic events and the overall
deformation of the material occur concurrently: the pla-
teaus of Fig. 2 become slightly tilted due to the overall
energy increase induced by the finite strain rate. The
criterion Tewari et al. use to separate individual plastic
events stipulates that energy should decrease monotoni-
cally during a single event; it may misidentify quasiequi-
libria for true equilibria, thus precluding the complete
identification of elementary events. A finite shear rate
may thus artificially ‘‘break’’ single plastic rearrange-
ments into several spurious subevents which have no
simple interpretation in the energy landscape.
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In conclusion, we have presented results on an atom-
istic system sheared in the athermal quasistatic limit. We
demonstrated the organization, during cascades, of ele-
mentary quadrupolar plastic zones into lines of slip ori-
ented along the Bravais axes of the cell. We proceeded to
perform a finite size scaling analysis which revealed a
linear system size dependence which indicates that the
faultlike patterns of energy fluctuations play a major rôle
in the emergence of scaling behavior. The overall picture
which emerges from our simulations thus explains and
clarifies various controversial claims found in the litera-
ture, providing a first step toward a unified view of
amorphous plasticity based on both the energy landscape
and real space pictures.
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