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Semiclassical Foundation of Universality in Quantum Chaos
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We sketch the semiclassical core of a proof of the so-called Bohigas-Giannoni-Schmit conjecture: A
dynamical system with full classical chaos has a quantum energy spectrum with universal fluctuations
on the scale of the mean level spacing. We show how in the semiclassical limit all system specific
properties fade away, leaving only ergodicity, hyperbolicity, and combinatorics as agents determining
the contributions of pairs of classical periodic orbits to the quantum spectral form factor. The small-
time form factor is thus reproduced semiclassically. Bridges between classical orbits and (the nonlinear
sigma model of) quantum field theory are built by revealing the contributing orbit pairs as topologi-
cally equivalent to Feynman diagrams.
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correlators of the level density ��E�, by averaging over
suitable ensembles of random matrices. Simplest is the

semiclassical limit �h! 0, T� !1 with T�=TH � const.
That limit and the averages indicated eliminate noise due
Fully chaotic dynamics enjoy ergodicity and thus visit
everywhere in the accessible space with uniform like-
lihood, over long periods of time. Even long periodic
orbits bring about such uniform coverage. Moreover, clas-
sical ergodicity provides quantum chaos with universal
characteristics.

Given chaos, quantum energy levels are correlated
within local few-level clusters but become statistically
independent as their distance grows much larger than the
mean level spacing �. The decay of correlations on the
scale � is empirically found system independent, within
universality classes distinguished by the presence or the
absence of time-reversal (T ) invariance [1,2]. Corre-
sponding universal long-time characteristics act on the
Heisenberg scale TH � 2� �h=�, with �h Planck’s constant.

Universal spectral fluctuations were conjectured as a
manifestation of quantum chaos two decades ago [3].
Now, the semiclassical core of a proof can be given.
Based on Gutzwiller’s periodic-orbit theory [4], our
progress comes with two surprises: one lies in its sim-
plicity, the other in the appearance of interesting mathe-
matics (nontrivial properties of permutations). Moreover,
the often disputed intimate relation between periodic
orbits and quantum field theory is confirmed for good.
We thus expect the underlying ideas to radiate beyond
spectral fluctuations, like to transport and localization.

Technically speaking, we want to show that each
completely hyperbolic classical dynamics has a quantum
energy spectrum with the same fluctuations as a random-
matrix caricature HRMT of its Hamiltonian, even though
that caricature has nothing in common with the
Hamiltonian but symmetry (absence or presence of T
invariance). The theory of random matrices (RMT)
[1,2,5], developed by Wigner and Dyson to account for
fluctuations in nuclear spectra, yields analytic results for
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two-point correlator ��E���E0� � ��E� ��E0�, where the
overlines denote the ensemble average. Its Fourier trans-
form with respect to the energy difference E� E0, called
spectral form factor K�	�, is predicted by RMT for sys-
tems without T invariance (unitary class) and with that
symmetry (orthogonal class) as

Kuni�	� � 	; Korth�	� � 2	� 	 ln�1� 2	�; (1)

respectively; here 	 is a time measured in units of the
Heisenberg time TH ranging in 0 � 	 � 1. Note that the
‘‘orthogonal’’ form factor admits the expansion K�	� �
2	� 2	2 � 2	3 � � � which converges for 0 � 	 � 1

2 .
Leaving larger times for future work we propose to
show fidelity of individual chaotic dynamics to (1).

Of the many ways of doing RMT averages yielding (1),
the quantum field-theoretical nonlinear sigma model
[6,7] deserves special mention since it yields a 	 expan-
sion of the form factor equivalent to the semiclassical
expansion to be developed here. The model points to
analogies between hyperbolic dynamics and the motion
of electrons in disordered media. In fact, the equivalence
of semiclassical and field-theoretic expansions was first
suggested in the context of disordered metals [8].

We start from Gutzwiller’s representation of the level
density of a hyperbolic system by a sum over its classical
periodic orbits, ��E� / Re

P
�A�e

iS�= �h, with S��E� the
action and A� the (dimensionless) stability amplitude of
the �th orbit. The form factor K�	� is the double sum

Kpo�	� �

*X
�;�0

A�A
�0e
i�S��S�0 �= �h�

 
	�

T� � T�0

2TH

!+
(2)

with T��E� the period of �; the angular brackets demand
averages over the energy and over a time interval �T �
TH. We aim at evaluating the periodic-orbit sum (2) in the
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to orbits with jS� � S�0 j � �h and purge K�	� of system
specific features.

For the formal double sum in (2) to converge to the
RMT prediction (1), it must be structured into contribu-
tions from families of orbit pairs, such that each term of
the 	 expansion of K�	� comes from a specific set of
families. The simplest family contains the diagonal pairs
f�; �g and, given time-reversal invariance, f�;T �g,
where T � is the time reverse of �; it yields Berry’s [9]
‘‘diagonal approximation’’ K�1�po � �	 where � � 1 with-
out and � � 2 with T invariance, due to the doubling of
pairs in the latter case. It is here, when summing over the
‘‘diagonal pairs’’ that we first meet the ergodicity of long
periodic orbits, through Hannay–Ozorio de Almeida’s
(HOdA) [10] sum rule h

P
�jA�j

2��	� �T�=TH��i � 	.
In a paradigmatic breakthrough, Sieber and Richter [11]
gave the family responsible for the 	2 term of T invariant
dynamics; it is on the basis of their insight that we could
find and account for all other families.

We first turn to the unitary class and propose to dem-
onstrate that all families of orbit pairs individually con-
tributing to higher orders 	n collectively cancel for n > 1.
To ease our task we assume two freedoms.

Long orbits have lots of close self-encounters.We speak
of an l-encounter when l orbit stretches get and stay close
for as long as their exponential divergence permits (Fig. 1).
Since the closest approaches discernible quantum me-
chanically have an action scale �h we expect relevant
encounter durations tenc of the order of the Ehrenfest
time TE � ��1 ln�const= �h�, with � the Lyapunov rate of
divergence. Departing from and ending on the 2l ‘‘ports’’
of an l-encounter are l ‘‘loops’’ with durations of the order
of the period T and thus of the Heisenberg time TH �
2� �h=� � �=2� �h, where � is the volume of the energy
shell. Different encounters must be considered as sepa-
rate: overlap of any two would yield a single one with
more internal stretches. More generally, an orbit must
leave an encounter before reentering it or another one.

Self-encounters lead us from an orbit � to partners �0.
Two orbits in a pair f�; �0g are practically indistinguish-
able in the loops outside encounters; they differ only
within comparatively short encounters, by their connec-
tions of the outside loops. The action difference S� � S�0
can thus be of order �h. Reshuffling intraencounter con-
nections of � either yields a partner orbit �0 or a pseudo-
FIG. 1. A triple encounter (l � 3) in the energy shell and its
Poincaré section for an orbit pair �; �0. Inset: Global appear-
ance of the pair and the generating encounter.
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orbit decomposing into shorter orbits; pseudo-orbits,
Fig. 2, are not admitted to the Gutzwiller sum (2).

Calling vl the number of l-encounters (l � 2) within
which � and �0 differ by connections of the coinciding
outside loops we write V �

P
lvl for the total number of

such encounters and L �
P

llvl for the number of orbit
stretches within encounters (equalling the number of
loops outside). We shall see that the families of orbit pairs
with fixed n � L� V � 1 exclusively contribute to 	n in
K�	�. To calculate those contributions and check that they
sum up to zero for n > 1 in the absence of T invariance,
first we must understand the phase-space structure of self-
encounters and, second, the combinatorics of counting
proper partners must be mastered.

We begin with a closer analysis of self-encounters [12].
Drawing a Poincaré section, two dimensional for two-
freedom systems, through an l-encounter we see the l
orbit stretches of, say, � pierce through that section in l
points xi � �ui; si�, i � 1 � � � l; one of these can be chosen
as the origin of coordinate axes spanned by the unstable
and stable manifolds of � through x1 � �0; 0�. For an
encounter to be close we require juij; jsij � c, with the
bound c small enough for the motion along the l orbit
stretches to allow for mutually linearized treatment. The
l� 1 piercings xi � 0 uniquely determine (i) the duration
t�l�enc�u; s� of an l-encounter as a (logarithmic) function of
the ui; si [12], (ii) the piercings of the partner orbit(s), and
(iii) the contribution to the action difference S� � S�0 .
There is a canonical transformation u; s! ~uu; ~ss diagonal-
izing the action difference to �S�l�enc �

P
l
i�2 ~uui~ssi. Both t�l�enc

and �S�l�enc are canonical invariants.
We characterize a set of encounters by a vector ~vv whose

components are the numbers vl of l-encounters. We define
a (weighted) number w�u; s�dL�VudL�Vs of encounter
sets with fixed vector ~vv and temporal order of the L visits
of the V encounters inside an orbit of period T; it contains
a factor for each encounter involved, the fraction of its
duration which the corresponding unstable and stable
components spend in the intervals �ui; ui � dui� and
�si; si � dsi�. That number is determined by ergodicity
as follows. A piercing of � through a section will be found
with the uniform probability dtiduds=� in a time inter-
val �ti; ti � dti� and in the area element �u; u� du� �
�s; s� ds�. We integrate the product of L� V such prob-
abilities over the L times ti; here t1 2 �0; T� while we
restrict the L� 1 other ti to (i) a specific order in the
interval �t1; t1 � T� and (ii) by minimal separations (due
to the ban of encounter overlap). To get the dimensionless
FIG. 2. Illustration of the counting problem: pseudo-orbits
(here, dashed line) must be eradicated.
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weight w�u; s�dL�VudL�Vs we divide the L-fold in-
tegral by the product

Q
t�l�enc of durations of the V encoun-

ters [12],

w�u; s� �
T�T �

P
lt�l�enc�L�1

�L�V�L� 1�!
Q
t�l�enc

; (3)

here, the restrictions mentioned in effect reduce the
interval accessible to L� 1 integration variables by
the cumulative duration texcl �

P
lt�l�enc of the L intra-

encounter stretches. We note that the contribution lt�l�enc of
each l-encounter to texcl depends on the l� 1 points of
piercing x � �u; s� � 0 of � through the pertinent section.
We shall see below that the nonvanishing duration texcl is,
even though a small correction to the period T in w�u; s�,
of decisive importance for spectral universality.

Remarkably, w�u; s� results as independent of the order
of the L passages of � through the V self-encounters. We
can therefore proceed to the number of self-encounters
with fixed ~vv and u; s irrespective of the order of visits,
N� ~vv�w�u; s�, by accounting for a multiplicity N� ~vv�.

The number N� ~vv� brings up a combinatorial problem
with a shade of topology mixed in (partner orbits must be
connected), decoupled from the phase-space considera-
tions yieldingw�u; s�. When stating that � and �0 differ in
vl l-encounters, l � 2; 3; . . . , we leave open (i) the order in
which the L encounter stretches are passed (in particular,
which is the first) and (ii) how the intraencounter con-
nections of � are reshuffled in �0. The number of possi-
bilities left is N� ~vv�; we can determine it by running
through all different orderings of visits as well as through
all intraencounter connections other than the one realized
by � and checking, in each case, whether an orbit or a
pseudo-orbit results. For only a few vl nonzero, N� ~vv� is
easily found with paper, pencil, and patience. For general
~vv, the permutation problem at issue can be attacked
recursively as discussed in the technical note below.

With the help of the weight N� ~vv�w�u; s� we replace the
sum over orbit pairs in (2) as

P
��0 !

P
�

P
~vv N� ~vv� �R

dL�VudL�Vsw�u; s�L�1. The number of loops L had
to be divided out here, since the L choices of one intra-
encounter stretch as the first yield the same partner orbit.
The summand simplifies as A�A



�0 ! jA�j

2, T� � T�0 !
2T� since in contrast to the action difference �S, the
prefactors and periods suffer no relative discrimination
by a small quantum unit. We may also invoke the HOdA
sum rule already met above, to do the sum over �, and
thus find the form factor as

K�	� � 	
	

�
X
~vv

N� ~vv�
Z c

�c
dL�VudL�Vs

w�u; s�ei�S= �h

L
:

(4)

Only a single term of the multinomial expansion of
�T � texcl�L�1 in w�u; s� survives the limit �h! 0, the
one which cancels the denominator

Q
t�l�enc and

comes with the factor �T=��L�V ; all other terms van-
014103-3
ish, either because they involve too low orders in the
period T and thus extra factors �h besides a power of
T=TH or because they oscillate rapidly and are annulled
by averaging over a small time window. The remain-
ing integral simplifies after the canonical transfor-
mation diagonalizing �S,

R
c
�c d

L�VudL�Vsei�S= �h �
�
R
c
�c dudse

ius= �h�L�V ! �2� �h�L�V . With �T2��h=��L�V�
	L�V we get the series K�	� � 	�

P
1
n�2Kn	n with the

coefficient

Kn �
1

�n� 2�!

X�n�L�V�1�

~vv

N� ~vv�
��1�V

Q
l
lvl

L
(5)

governed by ergodicity, combinatorics, and topology,
given the sets of separated close self-encounters.

The vanishing of the foregoing sum over families of
partner orbits is a property of the permutation group
which to the best of our knowledge was never noticed
before.We sketch the surprisingly simple proof of Kn � 0,
for n > 1 based on a recursion scheme for N� ~vv�, in the
technical note below. Universal spectral fluctuations are
thus established for dynamics without T invariance.

The orthogonal class of T invariant dynamics can be
treated similarly. We must generalize the notion of self-
encounters to include orbit stretches close to the others up
to time reversal. Configuration-space pictures prove use-
ful: an orbit stretch may be depicted by an arrow ! .
While all l-encounters admitted in the unitary case in-
volve l parallel such arrows (like!! or!!

!), we now face,
in addition, arrows with opposite directions (like  ! or
  
!). Likewise, loops in between self-encounters of an
orbit � appear nearly unchanged in partner(s) �0, except
that the senses of traversal may be opposite.

The multiplicity N� ~vv� of encounter ‘‘classes’’ ~vv leads to
a permutation problem slightly more complicated than in
the unitary case. Again, all classes with fixed n � L�
V � 1 contribute to 	n. The results (4) and (5) reappear
with an additional factor of 2 due to the fact that with �0 a
partner so is T �0. As discussed in the technical note, a
recursion relation arises for Kn which yields the random-
matrix form factor for the orthogonal universality class,
Korth � 2	�

P
n�2���2�

n�1=�n� 1��	n. We would like
to underscore that in establishing both the unitary and
the orthogonal form factors as universal we have ac-
counted for all orbit pairs whose members differ by
nothing but the way almost coinciding (up to time rever-
sal) loops are connected within close self-encounters.

The 	 expansion of Korth converges for 0 � 	 � 1
2 . The

summed up logarithm remains valid, by analytic con-
tinuation, up to the next singularity. Neither the locus of
that singularity (	 � 1) nor the form factor for 	 > 1 can
be found within the 	 expansion.We underscore once more
ergodicity and hyperbolicity as our basic assumptions; in
addition, strong action degeneracies as for dynamics with
Hecke symmetries must be excluded [13].

We must discuss the relation of our semiclassical work
to the zero dimensional sigma model of quantum field
014103-3
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theory [2,6,7]. The relevance of the sigma model for us
lies in similarities of its perturbative implementation to
our semiclassical expansion. A perturbative evaluation of
the sigma model involves Wick’s theorem which can be
shown to entail a recursive reduction scheme equivalent
to the topological and combinatorial problem yielding our
multiplicity N� ~vv�. Moreover, our orbit pairs correspond to
the Feynman diagrams depicting terms of the perturba-
tive treatment of the sigma model, with our l-encounters
and the outside loops the analogs of vertices (with 2l
ports) and propagator lines, respectively. Order by order
in 	, our families of orbit pairs are equivalent to the
Feynman diagrams of the sigma model [8].

Technical note.—We want to set up the permutation
problem yielding the mutiplicity N� ~vv�, first for the uni-
tary case. To that end, starting from an arbitrary orbit
stretch in some encounter we number the L stretches in
the order of visits by �. More precisely, we denote en-
trance ports of encounters by 1; 2; . . . ; L and exit ports by
10; 20; . . . ; L0, such that the kth stretch of � connects ports
k and k0. In a partner orbit �0 of � port k is connected to a
port j0k � k0. The L intraencounter stretches of � thus
correspond to the trivial permutation P�

E � �
1 2; ...;L
10 20;...;L0 �

while a partner �0 will have intraencounter connections
according to PE � �

1;...;L
j01;...;j

0
L
� � P�

E. Since reconnections
take place only within encounters, PE must be composed
of vl cycles of length l, l � 2; 3; . . . . (Mathematically
speaking, PE must belong to the conjugacy class
2v23v3 � � � lvl of the group of permutations of L objects
corresponding to the cycles defined by the vector ~vv.)

The loops common to � and its partners �0 are asso-
ciated with the permutation PL � �

10

2
20;...;L0
3;...;1 �. The whole of

� is represented by the product PLP
�
E � �

1
2
2;...;L
3;...;1� and that

product is a single-cycle permutation since � is a single
orbit, rather than a decomposing pseudo-orbit. Moreover,
the product PLPE describes a connected partner �0 rather
than a decomposing pseudo-orbit if and only if it is
single-cycle as well. The multiplicity N� ~vv� is thus found
by running PE through all possibilities and counting only
those for which PLPE is single-cycle.

In the orthogonal case there are 2l�1 distinct orienta-
tions of the stretches of an l-encounter. After combining
oriented loops with reconnections of encounter stretches
we must again check connectivity.

We have established a general recursion relation for the
multiplicity N� ~vv�, both in the unitary and the orthogo-
nal cases, by following the change of N� ~vv� as (i) two
encounters unite (vl ! vl � 1, vl0 ! vl0 � 1, vl�l0�1 !
vl�l0�1 � 1, in short ~vv! ~vv�l;l

0�), (ii) as an encounter
splits into two, and (iii) as an l-encounter becomes an
�l� 1�-encounter by uniting two of its orbit stretches.
The relations are best written for ~NN� ~vv� � N� ~vv���1�V�Q

ll
vl�L�n� 2�!��1; note that Kn � �

P�n�L�V�1�
~vv

~NN� ~vv�.
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In the unitary case we only need the special variant of
the general recursion relation concerning 2-encounters
merging with l-encounters, where the recursion reads
v2

~NN� ~vv� �
P

l�2l�vl�1 � 1� ~NN� ~vv�l;2�� � 0. Summing over
~vv with fixed n � L� V � 1 we obtain

P�n�L�V�1�
~vv �

�v2
~NN� ~vv� �

P
l�2l�vl�1 � 1� ~NN� ~vv�l;2��� � 0. In the fore-

going double sum we can replace ~vv�l;2� ! ~vv and thus
vl�1 � 1! vl�1. The sum now runs over all ~vv with
vl�1 > 0; however, the latter restriction is immaterial
due to the factor vl�1 in the summand. We thus obtainP�n�L�V�1�

~vv �v2 �
P

l�2lvl�1� ~NN� ~vv� � 0; here, the term in
the square bracket equals n� 1. The resulting identity
�n� 1�Kn � 0 implies Kn � 0 for n > 1.

In the orthogonal case we need two special cases of the
general recursion relation, to account for the ‘‘disappear-
ance’’ of 2-encounters and 3-encounters. A suitable linear
combination yields Kn�1 � ��2�n� 1�=n�Kn; the latter
recursion gives the random-matrix form factor.
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