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We have performed a Bell-type test for energy-time entangled qutrits. A method of inferring the Bell
violation in terms of an associated interference visibility is derived. Using this scheme we obtained a
Bell value of 2.784 = 0.023, representing a violation of 340 above the limit for local variables. The
scheme has been developed for use at telecom wavelengths and using proven long distance quantum
communication architecture to optimize the utility of this high dimensional entanglement resource.
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Bell inequalities [1] and other tests of nonlocality [2]
have a rich history in the evolution and understanding of
quantum correlations and, more specifically, entangle-
ment. This grew out of the EPR position on the complete-
ness of quantum mechanics [3]. However, more recently,
we have been able to approach these tests from another
perspective—that the violation of one of these Bell-type
inequalities can be seen as a witness of useful entangle-
ment [4]. This has its roots in the qubit domain but has
also been extended to qutrits, d = 3 dimensional systems,
in the context of quantum complexity [5]. This is just one
example of the current trend towards investigating
higher-dimensional entanglement. This trend is motivated
primarily by the promise of improved robustness of these
states to noise and the possibility of increased transmis-
sion rates for quantum key distribution schemes [6—8].
Perhaps more interestingly, however, is that with the in-
creased complexity of these higher-dimensional states
comes the possibility of new quantum protocols that can
capitalize on this useful entanglement.

There have been significant advances recently in the
experimental investigation of higher-dimensional entan-
glement. A range of schemes using various degrees of
freedom have been put forth: a four-photon polarization
scheme generating states with spin-1 statistics [9] and a
scheme incorporating lower order modes of orbital angu-
lar momentum (OAM) for photons producing qutrits [10]
have both performed Bell-type tests; quantum state to-
mography has recently been performed for OAM en-
tangled qutrits [11] and interference experiments have
shown time-bin entanglement up to d = 20 [12].

Photonic entanglement is, however, best suited for
quantum communication; therefore if we are going to
perform any protocol or distribute any entanglement
over significant distance, we need to think about the
architecture we use. A four-photon scheme, apart from
obvious constraints due to polarization, is impractical as
the encoding relies on all four photons being transmitted
and detected. The OAM scheme will again have problems
with long distance fiber transmission predominantly due
to dispersive effects between the different modes. By
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contrast, energy-time, and the similar time-bin, entan-
glement have a proven history over a long distance [13—
15] and the qutrit is encoded on a single photon.

In this Letter, we present the results for a Bell-type test,
based on the inequality of Collins et al [16] (CGLMP-
Bell), for energy-time entangled qutrits. The scheme is a
natural extension of the Franson arrangement for qubits
[17], and indeed the idea has previously been proposed
[18]. We also introduce a method and the associated con-
straints one needs to infer a Bell violation from an
interference visibility. We discuss how these constraints
correspond to the perception that higher-dimensional
entanglement is more robust and what this implies
experimentally.

We will detail our approach to performing a Bell test
momentarily, but first let us remind ourselves of the basic
plot. In theory, the Bell test begins with the usual sus-
pects, two parties: Alice and Bob, who are spatially
separated. They share a maximally entangled qutrit state
and they can choose between two different measurements
of three outcomes. They determine various probabilities
for the different measurements and outcomes and calcu-
late the relevant function to test the inequality.

First, we consider the experimental setup used to per-
form this Bell test (see the schematic of Fig. 1) to motivate
a physical interpretation when we introduce the inequal-
ity. We use energy-time entangled photon pairs created at
telecom wavelengths, via a periodically poled lithium
niobate (PPLN) waveguide [19], and two three-arm in-
terferometers [20] to generate and analyze entangled
qutrits. For each interferometer, we can define a phase
vector consisting of the two independent phases, e.g., the
relative phases between the short-medium (m) and short-
long (1), path lengths. Coincidence measurements at the
outputs of the interferometers project onto entangled
qutrit states defined when the photons take the same
path in each interferometer, short-short or medium-
medium or long-long at Alice-Bob.

For energy-time entanglement, this is realized by imag-
ining that we have some detection time, say, f, + ¢, for
Alice, where 14 is the optical distance from the photon
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FIG. 1 (color online).

Alice and Bob share entangled (energy time at 1300 nm) qutrits. Measurements are determined via

variations in the path lengths of their interferometers. There are five peaks in the arrival time histogram (shown on the right) due to
different path combinations. Coincidence detection events in the central peak project onto one of three orthogonal entangled qutrit
states. These coincidences (shown on the left) vary as a function of Alice and Bob’s phase vectors.

pair source to the detector, and a similar time for Bob.
Because of the long coherence length of the cw laser, we
do not have a well-defined f,. However, with the hindsight
of postselection we can define a coherent superposition of
three time-bin amplitudes, fy, ty — AT, ty — 2AT, relative
to the source that have well-defined time differences.
Thus, we have our qutrit state prepared. Passing through
the interferometer allows one to vary the two relative
phases between these time bins. As the path-length dif-
ferences in the interferometer are A7 and 2A 7, exiting the
interferometer corresponds to a Fourier transform and a
measurement in the transform basis defined by the post-
selected 7,. Bob does the same for his #;, + 75, and we
postselect entangled qutrits. (The histogram central peak
is centered at tz — 14, = 0.)

An arrival-time-difference histogram with five peaks,
due to all the possible path combinations, similar to the
inset on the right of Fig. 1, is generated for each detector
combination. Coincidence events in these central peaks
correspond to projections onto states of the form

|‘//(J’ k)) CS|SS> + cmei(a’"+‘8”’+¢ﬂ)|mm)

+ e TPy, (1)
Here «,,, @; andg,,, B,, represent the phases in Alice and
Bob’s medium and long interferometer arms. ¢’ and qSék
are multiples of 277/3 which depend on the path taken by
the photons in the interferometer and which output, j, k €
{0, 1, 2}, 3, they take [21,22].

To have maximally entangled qutrits we need |c,|* =
lc,n|> = |c;|?. Experimentally, this relies on the symme-
try of the fiber couplers. We require the splitting ratios to
be 1/3:1/3:1/3, where an input signal at any one of the
inputs is equally distributed in the three outputs. We use
the same coupler for the interferometers input and output
[20], and for both interferometers the coupling ratios are
within 5% of this ideal value. We can then observe the
three orthogonal states corresponding to the three differ-
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ent coincidence detections, 0,0p, 0415, 0425, or their
cyclic permutations. When the phases are varied the
coincidences vary as a function of Alice and Bob’s phase
vectors, a sample of which is inset on the left of Fig. 1 for
a fixed but arbitrary ratio of medium and long phases. For
more technical details concerning the experimental
scheme, we refer the reader to [22].

The CGLMP-Bell inequality is defined in terms of
the measurement probabilities, which we can define
for these states as PFhaseAPhaseB (Regult A, Result B).
Because of the coupler symmetries, we can satisfy
the following constraints: P™(0,0) = P"™(1,1) =
P™(2,2); P"(0, 1) = P™(1,2) = P"(2,0); P"™(2,1) =
P™(0,2) = P™"(1, 0). These relationships then simplify
the inequality such that

I; = 3[{P'(0,0) — P'(0, 1)} + {P?!(0, 1) — P?'(0,0)}
+ {P?%(0,0) — P?%(0, 1)} + {P'2(0,0) — P'%(0,2)}]
(2

= 2 (for local variables).

For this inequality Alice and Bob have a choice of two
phase settings each. Each of these settings is a vector of
two phases. We define phase vectors, A; = (a,,;, a;;), for
Alice’s, and B; = (B8,,;» B;), for Bob’s. The optimal Bell
phase vectors are [16,23] A; = (0,0); A, = (7/3,27/3);
B, = (i/6, w/3); B, = (— /6, —7/3). The combination
of the interferometers and these phases realize a von
Neumann measurement that is optimal in complete gen-
erality. Here we note that for each of these phase vectors
we have the second phase equal to twice the first phase. We
see in Eq. (1) that the state’s phases depend on the sum of
the phases in the two interferometers and one can also see
that the vector sum of the Bell phases, A; + B, A; +
B,, ...etc., retains this relationship which is an important
constraint that we will come back to momentarily. With
these settings the coincidence probabilities are further
constrained such that we have each of the four bracketed
terms in Eq. (2) equal. The inequality thus reduces to
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I, = 12[P'(0,0) — P''(0, 1)]

4+23 1
=12 ————— — |=2872....
[27 27} 87 3)

We now consider imperfections in the system. The
simplest way to do this is to introduce noise to the system,
and when looking at Bell inequalities one normally uses a
symmetric noise model. One can then characterize the
system in terms of its robustness to the admixture of
noise. Consider the state

p = Al + (1 — A)%, 4

where |¢) is a maximally entangled pure qutrit state and
I, is the Identity operator for the entangled qutrit space,
d> = 9. The CGLMP-Bell inequality scales simply with
this mixing parameter, A, such that I(p) = Al; [16].
Inverting this gives the critical mixing value such that
the inequality is violated. This inequality is defined for
arbitrary finite dimensions and one finds for d = 2, A§ =
1/+/2 = 0.707. For qutrits, d = 3, the critical mixing
value is lower, A§ = (63/3 — 9)/2 = 0.696.. .. and, hence,
it is more robust with respect to noise.

The CGLMP-Bell inequality reveals the robust nature
of higher-dimensional entanglement as the amount of
noise that can be added to the system increases with the
dimensions of the system [16]. It has also been shown that
the robustness of the CGLMP-Bell inequality is equiva-
lent for other types of ‘“‘natural” noise models [24]. For
example, choosing a phase noise model, a mixture of the
|ss), |mm), and |lI) components, which is quite realistic
for energy-time entanglement over tens of kilometers,
will produce the same results as in (5) and (6).

If we assume a symmetric noise model as in Eq. (4) for
our experiment, then we can determine the coincidence
probabilities as a function of the two phases, in the
medium and long arms of the two interferometers, and
the mixing parameter, A:

Pj 3+ 22[cos(a,, + By + @¢7t) + cosla; + B + ¢F)
+cos(ay, + By — a;— B+ ¢ — )]
®)

In practice, we do not take measurements at fixed phase
settings; instead we continuously scan the phases. This is
done in a controlled manner such that we always have the
long phase twice that of the medium, as is the case for
the Bell phase vectors, as previously mentioned. Hence,
the coincidence probability becomes a function of just the
one phase and the mixing parameter as in the qubit case.
This is confirmed experimentally by looking at the inter-
ference events associated with the satellite peaks in the
arrival-time histogram. It can be shown that if the phase
is varying at the same rate in both of these peaks then we
have the desired factor of 2 relating the two phases [22].

010503-3

This means that we have the symmetry simplified to the
level of Eq. (3). It also means that we can use a fitting
function based on Eq. (5) to directly determine A and,
hence, also determine the value for the CGLMP-Bell
inequality.

We have used interferometric methods to generate en-
tangled qutrits and as such we would like to analyze the
system using standard interferometric techniques, such as
interference visibilities. This approach is well understood
and often used when characterizing qubit schemes. In the
case of qubits the mixing parameter, A, corresponds
directly to the visibility and, hence, a visibility greater
than A§ implies the state is capable of violating the
inequality. Of course, to infer this violation one must be
able to satisfy various constraints that depend on the
symmetry of the system.

In the case of qutrits, and states of higher dimensions
in general, we then can define the visibility in the follow-
ing manner. Consider Eq. (4), with the identity and the
entangled state temporarily defined on a d?-dimensional
space, such that we have the following result:

Rmax - Rmin _ dA

V(d) = = .
(@) Ryax T Rin 2+ A(d —2)

(6)

Here one can imagine that for some combination of
detectors we have perfect correlations and expect a maxi-
mum coincidence rate of R, = A + (1 — A)/d, the first
term due to the d possible outcomes and the second term
due to the noise. If we are perfectly uncorrelated, we
expect Ry, = (1 — A)/d due only to the noise. To satisfy
these conditions in our experiment, we need the same
symmetry constraints on the interferometer couplers and
the 2:1 phase constraint, as one needed for the Bell test.

In Fig. 2, we show this function and clearly see that,
while the critical values for A, denoted by (*), to violate
the Bell inequality do decrease, marginally, with the
dimensions, the visibility becomes significantly more
robust. For the case of qutrits we have V(3) = 3A/(2 +
A) which implies a visibility greater than 0.775..., even

#
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FIG. 2 (color online). The relationship between the mixing
parameter A and the visibility for various dimensions. Also
shown are the critical values for A (*) to violate the Bell
inequality.
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FIG. 3 (color online). Raw coincidence count rates, circles, as
the phases are varied under the Bell phase constraint. Also
shown is a fit using Eq. (5) and the noise level. Inset: the three
(net) orthogonal results.

though we have added more noise than in the qubit case.
Experimentally, this can be reconciled, in part, as a result
of the standard Bell model and symmetric noise which
adds the noise to irrelevant degrees of freedom.

In Fig. 3, we see the coincidence counts as a function of
one phase, with the other in this fixed 2:1 relationship. A
least-squares fit of this data returns a value A = 0.848 =
0.008. From this we can then directly calculate the in-
equality, Io,, = Al; = 2.436 = 0.023, which corresponds
to a violation of the inequality by 19¢. If, on the other
hand, we wish to directly interpret this in terms of the
visibility, we can use Eq. (6) and obtain V(3) = 0.893 =
0.006. The critical visibility value for qutrits is 0.775.. .,
and we find from the visibility a violation of 190 as we
would expect from the previous result. This is the raw
result which includes the background noise counts as well
as those due to the correlated photons. We can directly,
and concurrently, measure this noise (also shown in Fig. 3)
by looking at detection events that arrive outside of these
five peaks in the histogram of Fig. 1. If we subtract this
noise and look at the net results, we find A, = 0.969 *
0.008, which in turn gives us a net Bell value of Ioy; o =
Anetls = 2.784 + 0.023 and a net visibility of V(3), =
0.979 = 0.006 with a violation of the inequality by 340.

In the inset of Fig. 3, we have shown the net coincidence
counts for the three orthogonal outputs, corresponding to
coincidence detections at 0,0p, 0415, 0425; the raw re-
sults for the curve 0,25 are shown in the main figure. We
clearly see the signature three-way symmetry for the
entangled qutrits with the maxima evenly separated in
phase space. In terms of the correlations, we also see that
for each maxima for one output we have minima, almost
at the noise level, at the other two as we would expect
given the high visibility.

In this Letter, we have presented the results for a Bell-
type test for energy-time entangled qutrits achieving
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violations of 19 and 340 for the raw and net results,
respectively. We have also derived a simple means of
determining this violation in terms of interference visi-
bility. We have approached both the experimental design
and the Bell test itself with the generation and character-
ization of a source of useful qutrit entanglement in mind.
The high signal to noise level for the raw results reinfor-
ces the utility of this arrangement and its suitability to
high dimensional long distance quantum communication.
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