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Many Copies May Be Required for Entanglement Distillation
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A mixed quantum state � shared between two parties is said to be distillable if, by means of a
protocol involving only local quantum operations and classical communication, the two parties can
transform some number of copies of � into a single shared pair of qubits having high fidelity with the
maximally entangled state j��i � �j00i � j11i�=

���
2

p
. In this Letter it is proved that there exist states

that are distillable, but for which an arbitrarily large number of copies is required before any distillation
procedure can produce a shared pair of qubits with even a small amount of entanglement. Specifically,
for every positive integer n there exists a state � that is distillable, but, given n or fewer copies of �,
every distillation procedure outputting a single shared pair of qubits outputs those qubits in a separable
(i.e., unentangled) state.
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case where � is a pure, entangled state, distillation is
always possible [3]; even if � has a very small amount

some n. This is because a large number of copies of �
can be collected into groups of size n, the distillation
Introduction.—Entanglement represents an important
resource in quantum information theory. For example, by
means of quantum teleportation [1], entanglement shared
between two parties that may send only classical infor-
mation to one another allows the parties to exchange
quantum information. Superdense coding [2], which al-
lows one qubit of quantum communication to transmit
two classical bits of communication using prior entangle-
ment, is another example where entanglement is used as
a resource. From the point of view of such protocols, a
shared pair of qubits in the state j��i � �j00i � j11i�=

���
2

p

(or any other maximally entangled state) represents one
unit of entanglement, known as an e-bit. For instance, at
the cost of one e-bit plus two classical bits of communi-
cation, quantum teleportation allows for the transmission
of one qubit of information.

Suppose that two parties, Alice and Bob, would like to
perform quantum teleportation or some other protocol
based on entanglement, but instead of sharing copies of
the state j��i they share copies of some other quantum
state �. For instance, � may represent a noisy copy of
j��i that does not allow for sufficiently accurate trans-
mission of quantum information by Alice and Bob’s stan-
dards, or � may be a strange quantum state that is
entangled but has no resemblance whatsoever to j��i.
The process of entanglement distillation, first considered
by Bennett et al. [3], addresses this situation—by means
of some protocol allowing Alice and Bob to perform only
local quantum operations and to communicate classically
(an LOCC protocol, for short), some number of copies of
� may be transformed into some (possibly smaller) num-
ber of copies of j��i with high accuracy. When it is
possible for Alice and Bob to transform one or more
copies of � into at least one copy of j��i with high
accuracy in this way, � is said to be distillable.

Some states � are distillable and some are not. In the
0031-9007=04=93(1)=010502(4)$22.50 
of entanglement, sufficiently many copies of � allow
copies of j��i to be distilled with high accuracy. Simi-
larly, if � is a mixed state of exactly two qubits, � being
distillable is equivalent to � being entangled [4,5]. In the
general case for mixed states, however, there are ex-
amples of states that are entangled but are not distillable
[6]. Such states are known as bound-entangled states.

All currently known examples of bound entangled
states have the property that the partial transpose of the
density operator of the state in question is positive semi-
definite. States of this sort are called PPT (positive par-
tial transpose) states for short. While every PPT state is
undistillable, the converse is not known to hold, and it is a
central open question in the theory of entanglement to
determine whether or not this is the case. More generally
speaking, there is no effective procedure known to deter-
mine whether a given state is distillable or not. For a
certain range of parameters, Werner states have been
conjectured to be examples of bound entangled non-
PPT states [7,8].

Some of the difficulty in understanding entanglement
distillation may be attributed to the fact that, by defini-
tion, an arbitrary number of copies of the state in question
may be used in the distillation process. Suppose that
instead of having an unlimited number of copies of a
given bipartite state �, Alice and Bob have some fixed
number of copies that they wish to subject to distillation.
One says that � is n-distillable if there exists an LOCC
protocol whereby Alice and Bob can convert n copies of �
to a shared pair of qubits that is entangled. It should be
stressed that this definition places no restriction on the
amount of entanglement of the shared pair of qubits out-
put by the procedure; it requires only that this pair of
qubits are in some entangled (i.e., nonseparable) state.
Note, however, that a necessary and sufficient condition
for a state � to be distillable is that � is n-distillable for
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procedure used to produce entangled pairs of qubits, then
these pairs of entangled qubits further distilled using the
procedure of Ref. [5]. For pure states and for mixed states
on a single shared pair of qubits, distillability and
1-distillability are equivalent.

The main result of this Letter establishes that for any
given value of n there exist states that are distillable but
not n-distillable. This was not previously observed even
for the case n � 1. The dimension of such states does not
need to depend on n; 9 � 9 dimensions are sufficient for
the existence of such states for all values of n.

Theorem 1: For any choice of integers d 	 3 and
n 	 1, there exists a d2 � d2 bipartite mixed quantum
state that is distillable but not n-distillable.

Remark: It should be noted that for the particularly
simple case of n � 1, this theorem follows from results
proved in Ref. [9]. Specifically, it is implicit in that paper
that there exist states � and � that are not 1-distillable
(and, in fact, � is not distillable at all), but such that � � �
is 1-distillable. Assuming without loss of generality that
these are states of systems of equal size, it follows that the
state 1

2 j00ih00j � �� 1
2 j11ih11j � � is 2-distillable but not

1-distillable. A similar example can be derived from the
results of Ref. [10]. It is not clear, however, that this
construction can be extended beyond the case n � 1.

Preliminaries.—Let A and B be Hilbert spaces. A
vector j i 2 A �B is said to have Schmidt rank k if

rank�trAj ih j� � k;

where trA:L�A �B� ! L�B� denotes the partial trace.
Given a linear operator X 2 L�A �B�, the partial trans-
pose over A applied to X is denoted by TA�X�.
Transposition must be taken with respect to a particular
basis of A, which is always assumed to be a given
standard basis in this Letter.

The following fact, first proved in Ref. [6], allows
entanglement distillation to be characterized without
reference to LOCC transformations. A density matrix �
acting on A �B is 1-distillable if and only if there exists
some Schmidt rank 2 vector j i 2 A �B for which

h jTA���j i< 0;

and � is n-distillable if ��n is 1-distillable. If � is
n-distillable for some integer n 	 1, then � is distillable,
otherwise � is undistillable. It is convenient that this
characterization holds regardless of whether the state �
is normalized. Consequently, normalization factors for
density matrices are often ignored in this Letter.

A convention that is followed throughout this Letter is
that the Hilbert space A always refers to Alice’s part of a
given system and B refers to Bob’s part. Schmidt rank
and any reference to distillation is generally with respect
to this partition. Different symbols, such as F , G, H ,
etc., are used to refer to Hilbert spaces of systems not
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necessarily shared between Alice and Bob in this way in
order to avoid confusion.

Let F and G be d-dimensional Hilbert spaces, and let
fj1i; . . . ; jdig be the standard basis for both of these spaces.
Four projection operators on F �G play an important
role in this Letter. The first two projections are

P � jihj;

Q � I � jihj;

where

ji �
1���
d

p
Xd
i�1

jiijii:

The other two projections are

R � 1
2�I � F�;

S � 1
2�I � F� � I � R;

where

F �
X

1�i;j�d

jiihjj � jjihij:

The projection R is the projection onto the antisymmetric
subspace of F � G, while S is the projection onto the
symmetric subspace of F � G. The following relations
among these projections and the partial transpose hold:

TF �P� � �
1

d
R�

1

d
S;

TF �Q� �
d� 1

d
R�

d� 1

d
S;

TF �R� � �
d� 1

2
P�

1

2
Q;

TF �S� �
d� 1

2
P�

1

2
Q:

Proof of theorem 1: Consider a system with four
d-dimensional components, two in Alice’s possession
and two in Bob’s possession. It is convenient to refer to
these systems as quantum registers X1; . . . ; X4 with cor-
responding Hilbert spaces H 1; . . . ;H 4. The standard
basis for these spaces is taken to be fj1i; . . . ; jdig. Later
it will be necessary to consider systems with more regis-
ters, which will be labeled similarly and will have corre-
sponding Hilbert spaces labeled similarly. In all cases, it
is assumed that Alice possesses the odd-numbered regis-
ters and Bob possesses the even-numbered registers.
When necessary, the tensor product structure of various
operators is indicated by subscripts that index these
systems. For example, the projection R on H 1 �H 2
010502-2
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tensored with the projection S on H 3 �H 4 is denoted
R1;2 � S3;4.

Define the (unnormalized) state ��"� as

��"� �
d� 1� "
d� 1

R1;2 � R3;4 � S1;2 � S3;4:

Theorem 1 follows from these two lemmas.
Lemma 2: For any integers d 	 3 and n 	 1,

there exists a real number " > 0 such that ��"� is not
n-distillable.

Lemma 3: For every d 	 3 and " > 0, the state ��"� is
distillable.

Proof of lemma 2: Let A � H 1 �H 3 and B �
H 2 �H 4. The partial transpose of ��"� is

TA���"�� � 1
4��P � P� "P �Q� "Q � P� �Q �Q�;

(1)

where � � �d� 1�2 � �d� 1� "��d� 1� and � � 1�
d�1�"
d�1 . The partial transpose of n copies of ��"� can be

expressed as

�TA���"����n �
1

4n
X

x2f0;1g2n
��x��x;

where �0 � P, �1 � Q, �x � �x1 � � � � ��x2n for x 2
f0; 1g2n, and each coefficient ��x� is easily determined by
Eq. (1) above. In particular, these coefficients satisfy
��12n� � �n, ��02n� � �n, and j��x�j � "�n�1 for all
x =2 f02n; 12ng.

Suppose that j i 2 A�n �B�n is a unit vector having
Schmidt rank equal to 2. Then

h jQ�2nj i 	
�
1�

2

d

�
2n
:

This inequality is proved in Dür et al. [7] for the case d �
3, and generalizes to arbitrary d without complications. It
follows that

h jTA���"���nj i 	
�n

4n

�
1�

2

d

�
2n
�"�n�1:

Because � and � can be lower bounded and upper
bounded, respectively, by positive real numbers not de-
pending on ", it follows that the above quantity is positive
for sufficiently small " < 0. For such a choice of ", it is
therefore the case that ��"� is not n-distillable. �

Proof of lemma 3: It is assumed that Alice and Bob
have an unbounded supply of copies of ��"�. Alice and
Bob iterate a particular process involving eight
d-dimensional registers X1; . . . ; X8 with corresponding
Hilbert spaces H 1; . . . ;H 8. As before, it is assumed
that Alice possesses the odd-numbered registers and
Bob possesses the even-numbered registers.

Suppose at some instant that the registers X1; . . . ; X4

contain the state

�R1;2 � R3;4 � S1;2 � S3;4
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for some � 	 0, while registers X5; . . . ; X8 contain a copy
of ��"�, i.e.,

d� 1� "
d� 1

R5;6 � R7;8 � S5;6 � S7;8:

Alice measures the pair �X1; X5� with respect to the
measurement described by fP;Qg, and Bob does likewise
with the pair �X2; X6�. The process being iterated fails if
either of the measurement outcomes does not correspond
to the projection P. In case they both obtain an outcome
corresponding to projection P, they discard the registers
on which they performed the measurements, which leaves
the four registers �X3; X4; X7; X8� in the state

�
d� 1� "
d� 1

tr��P1;5 � P2;6��R1;2 � R5;6��R3;4 � R7;8�

� tr��P1;5 � P2;6��R1;2 � S5;6��R3;4 � S7;8�

d� 1� "
d� 1

tr��P1;5 � P2;6��S1;2 � R5;6��S3;4 � R7;8�

tr��P1;5 � P2;6��S1;2 � S5;6��S3;4 � S7;8:

One may calculate that

tr��P1;5 � P2;6��R1;2 � R5;6�� �
d� 1

2d
;

tr��P1;5 � P2;6��R1;2 � S5;6�� � 0;

tr��P1;5 � P2;6��S1;2 � R5;6�� � 0;

tr��P1;5 � P2;6��S1;2 � S5;6�� �
d� 1

2d
;

and therefore the state of the registers �X3; X4; X7; X8�
above is

d� 1

2d

�
�
�
1�

"
d� 1

�
R3;4 � R7;8 � S3;4 � S7;8

�
:

Now, based on this process, Alice and Bob distill their
copies of ��"� as follows. They begin with �X1; . . . ; X4�
and �X5; . . . ; X8�, each containing a copy of ��"�, and the
above iteration is performed. If it is successful, they
relabel registers �X3; X4; X7; X8� as �X1; X2; X3; X4� and
initialize �X5; . . . ; X8� with a new copy of ��"�.
Otherwise, if it is not successful, they start the entire
process over with both �X1; . . . ; X4� and �X5; . . . ; X8� ini-
tialized to ��"�. This process is repeated until a number k
of consecutive successes has been achieved that satisfies

d� 1� "
d� 1

�
1�

"
d� 1

�
k
> 3:

This eventually happens with probability 1. At a point
when it has happened, the registers �X1; X2; X3; X4�
contain a state of the form �R1;2 � R3;4 � S1;2 � S3;4 for
� > 3.
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It remains to prove that for � > 3 the state

�R1;2 � R3;4 � S1;2 � S3;4

is 1-distillable. To see this, consider the Schmidt rank 2 vector

j�i � j1i1j2i2�j1i3j1i4 � j2i3j2i4�:

Because

TA��R1;2 � R3;4 � S1;2 � S3;4� �
�� 1

4
I1;2 � I3;4 �

��� 1�d
4

I1;2 � P3;4 �
��� 1�d

4
P1;2 � I3;4 �

��� 1�d2

4
P1;2 � P3;4;
it follows that

h�jTA��R1;2 � R3;4 � S1;2 � S3;4�j�i �
3� �
2

< 0:

This completes the proof. �
Discussion.—Theorem 1 establishes a counterintuitive

property of entanglement distillation, which is that en-
tanglement distillation is nonlinear with respect to the
number of copies used in the distillation process. It is
curious that there exist, for instance, examples of quan-
tum states � such that 106 copies of � are not sufficient for
a single shared pair of nonseparable qubits to be distilled,
but with many more copies of � near-perfect e-bits can be
distilled.

As discussed in the introduction, no effective proce-
dure is known that determines whether or not a given
bipartite state is distillable. This Letter rules out the
possibility that distillability is equivalent to n-
distillability for some finite value of n, and therefore
implies the characterization for n-distillability introduced
in Ref. [6] and discussed above does not extend to an
effective test for distillability in any obvious way.

Finally, the result proved here has implications to the
conjecture of Refs. [7,8] concerning the distillability of
Werner states for certain ranges of parameters. More
specifically, the (unnormalized) family of Werner states
�W��� � S� �R in d � d dimensions are readily seen to
be non-PPT states for �d� 1�=�d� 1�<�, and 1-
distillable if and only if � > 3. The conjecture of
Refs. [7,8] is that �W��� is undistillable for � � 3, which
would imply that the PPT states are a proper subset of the
undistillable states. One of the pieces of evidence pre-
sented in support of this conjecture was that for every
positive integer n, there exists some value of � > �d�
1�=�d� 1� for which �W��� is not n-distillable. (Indeed,
the proof of lemma 2 above proceeds along similar lines
to the proof of this fact from Ref. [7].) This Letter
010502-4
certainly does not refute this conjecture, but does call
into question the evidence just discussed. In particular,
the states ��"� defined in the proof of theorem 1 possess
essentially the same property of being neither PPT nor
n-distillable for some choice of ", but nevertheless are
distillable. Perhaps this fact may shed some light on the
question of whether or not non-PPT states can always be
distilled.
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