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Light emission from carbon nanotubes is expected to be dominated by excitonic recombination. Here
we calculate the properties of excitons in nanotubes embedded in a dielectric, for a wide range of tube
radii and dielectric environments. We find that simple scaling relationships give a good description of
the binding energy, exciton size, and oscillator strength.
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The optical properties of carbon nanotubes have re-
ceived increasing experimental and theoretical attention.
Optical absorption and emission spectra of carbon nano-
tubes have been studied by a number of groups [1-6], and
electro-optical devices have already appeared [7,8].
Initial attempts to explain the experimental observations
naturally took independent-electron theory as their start-
ing point. However, theoretically it is now clear that emis-
sion is dominated by excitonic recombination [9-12].

A number of theoretical approaches have been used to
describe these excitons. One approach involves varia-
tional calculations [10,11]. While valuable, these have
been limited to an effective-mass approximation and do
not address issues of spectral weight. The most accurate
description is provided by an ab initio solution of the
Bethe-Salpeter equation (BSE) using GW-corrected qua-
siparticle energies [12]. However, it is not currently fea-
sible to apply this computationally intensive approach to a
wide range of nanotube sizes or environments.

Here we use an intermediate level of theory to provide
a broad overview of the exciton properties. We calculate
the excitonic properties of nanotubes embedded in dielec-
tric media for the range of tube radii and dielectric con-
stants most relevant to potential applications. We find that
the exciton size, binding energy, and oscillator strength
all exhibit robust (though approximate) scaling relation-
ships. The relationships obtained for the excitonic proper-
ties can be used to better understand and optimize the
operation of nanotube optoelectronic devices.

The proper procedure for the calculation of excitons
has been described in detail in Ref. [13]. It involves
solving the Bethe-Salpeter equation,

AAT + D K pAS = QA7 (1)
k/

where the kernel K ;» describes the interaction between
all possible electron-hole pairs of total momentum g,
and A, is the quasiparticle energy for a noninteracting
electron and hole with wave vector k and g.,. — k. The
exciton momentum g.,. is equal to that of the exciting
photon, and is hereafter approximated by g.,. = 0. We
approximate the quasiparticle energies by eigenvalues of
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the tight-binding Hamiltonian [14,15] (¢t = 3.0 eV), with
any additional self-energy corrections restricted to the so-
called “scissors operator,” in which the self-energy is
approximated by a rigid shift of the conduction band rela-
tive to the valence band. Since the quasiparticle band
structures are not well known for nanotubes of varying
diameters and embedding media, we report only proper-
ties that are not affected by the magnitude of this shift.
For the optically active singlet excitons, the interaction

has two contributions, direct ()K?) and exchange (K*):
Kk,k/ = j(d

w25 2

where the direct (exchange) term is evaluated with the
screened (bare) Coulomb interactions [13]. The un-
screened Coulomb interaction between carbon p, orbitals
is modeled by the Ohno potential, which realistically
describes organic polymer systems:

U

\/(43280 Urij)2 +1

where r;; is the distance between sites i and j, and U =
11.3 eV is the energy cost to place two electrons on a
single site (r;; = 0). Our results are not sensitive to the
value of U when the size of the exciton is large.

An ideal calculation would include the nonlocal dielec-
tric response of both the nanotube itself and the medium
in which it is embedded. Here, for computational sim-
plicity, we replace this complicated response function
with a single dielectric constant & [16]. This is most
accurate for narrow tubes, and for embedding media
with large dielectric constants. In this regime, the exciton
length along the tube is large relative to the tube radius,
and most of the dielectric screening occurs in the sur-
rounding medium. The screening is then well described
by the dielectric constant & of the nanotube environment.
For isolated nanotubes, or tubes in low-& media, this
treatment is not very accurate. Fortunately, it is most
accurate in precisely the regime of greatest technological
interest. Modulated electro-optical devices [7,8] are most
practical for relatively narrow tubes embedded in SiO,
(g ~4) or higher-& materials.

V(rij) = (3)
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To calculate the optical properties, we evaluate the
imaginary part of the dielectric function for light polar-
ized along the nanotube axis [17]:

8mle? P, (k) |2
e s k

where P is the dipole matrix element [18]. The optical
response Eq. (4) is the same as derived in the presence of
the GW nonlocal potential [17]. &,(w) obeys a sum rule,
where [ e,dw =Y P? (k)/A7 is a constant independent
of the strength of the screened interaction e”/«.

We solve the BSE equation (1) by direct diagonaliza-
tion, choosing a k sample sufficient to converge the
low-energy optical spectra (and a fortiori the binding
energies). We calculate the binding energy, size, and
spectral function for singlet excitons. The binding energy
of the first optically active exciton versus € is shown in
Fig. 1(a) for four zigzag tubes with diameters d =
1.0-2.5 nm. (There is another singlet state 3—5 meV lower
in energy, but it is optically silent by symmetry.)

The dependence of binding energy E,; on ¢ in Fig. 1
can be fitted well with a power law, with the exponent
being almost independent of the tube diameter. This
suggests a more general power-law scaling, which we
can motivate in an effective-mass approximation as fol-
lows. Given a variational wave function described by a
single parameter L that scales the size along the tube
axis, the exciton binding energy is

B e (L B* (L mR
El ¢ ————fls =gl — ) 5
L7 omL? eRf<R> mRzg(R e ) ©)
Here the first term is the kinetic energy and m is the
effective mass. The second term is the potential energy,
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FIG. 1 (color online). (a) Binding energy of first optically
active exciton, versus g, in four semiconducting zigzag tubes:
(13,0), (19,0), (25,0), and (31,0). (b) Scaling of binding
energy of first and second exciton (red dots) in semiconducting
tubes with all possible chirality (156 tubes with d =
1.0-2.5 nm, & = 2-15). Here R and m are in a.u. The black
solid line is the best fit to Eq. (7) for € = 4-15 (3% rms error
over this range), corresponding to &« = 1.40 and A, = 24.1 eV.
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which depends on the exciton size via the dimensionless
function f(L/R). Then the exciton binding energy is

. K> (mR
E, = nEn(EL) == h(? ), (6)
E, ~ ApR*?ma~ e, )

where we approximate the function 4 by a power law over
the range of interest, with empirical parameters & and A,,.
The effective mass m depends on the tube indices [14]
(i.e., on radius and chirality).

In 3D semiconductors, the potential energy is o« 1/L,
and the energy is minimized when the exciton size Lg «
g/m, so the binding energy scales as E, « m/€”. This
corresponds to true scaling, with a power law a@ = 2 in
Eq. (7). In the case of nanotubes, the power-law scaling is
only an approximation. Nevertheless, for the most im-
portant range of tube sizes and dielectric constants, the
behavior is rather well described by a power-law scaling
in R and & with a single value of «. Indeed, all the binding
energies for the first and second excitons in semiconduct-
ing tubes, with all possible chiralities (d = 1.0-1.5 nm),
collapse onto a single curve shown in Fig. 1(b). Similar
energy scaling was reported by Pedersen [10] in a varia-
tional effective-mass model. In the range € = 4, where
our approach is most reliable, we obtain the best fit with
a = 1.40.

The second exciton that is optically active derives
primarily from the second band of the nanotube. It falls
within the continuum of the first band, and so becomes a
resonance with a finite lifetime [12]. By artificially turn-
ing off the interband coupling, we determine that this
coupling has very little effect on the exciton energy.

Considerable attention has been focused on the ratio
E,,/E;,, between the binding energies of the first and
second excitons [11,12]. (E,, is defined relative to the
second-band quasiparticle gap. Note that the exciton for-
mation energies involve also the quasiparticle band gaps.)
The scaling relation of Eq. (7) predicts Ejy/E, =
(m,/m)*" !, where m, and m, are the effective masses
of the first and second bands. In the case of zigzag tubes,

th] <1 + A] >_1
m = —— o— ,
L3422 2t

h*A, <1 3 A2>—1

m»y, — —=—= a
23422 2t

Here A and A, are the tight-binding band gaps, a is the
graphene lattice constant, and for tube indices (n, 0), o =
1 if mod(n, 3) = 1 and o = —1 if mod(n, 3) = 2.

It is common to treat the gap values in the infinite-
radius limit, AY = 2A% = 2ta/+/3R. This is rather accu-
rate (within 5%) for tubes with d = 1.0-2.5. On the other
hand, for the same range of diameters, the effective-mass
ratio m,/m; varies from 3.4 to 1.3, approaching the
infinite-radius limit m,/m; — 2 much more slowly than
the gap ratio. Thus caution must be used in discussing
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available experimental data in terms of the R — oo limit
[11]. In particular, for the (8, 0) tube m,/m; = 0.96, and
according to Eq. (7) the binding energies of the first two
excitons should be very similar. Indeed, the accurate first-
principles calculations by Spataru et al [12] find the
binding energies of the first and second excitons (A} and
C in [12]) to be 0.99 and 1.00 eV. Using ¢ = 1.93 to best
reproduce this, our calculations give E,; = 0.99 eV and
E,, = 1.05 eV. In contrast, the (10, 0) tube has m,/m; =
4.14, and for the same £ = 1.93 we find E;,/E,; = 1.41.
(The simple m®~! scaling is not accurate for such small
e.) It is important to note that effective-mass dependence
similar to Eq. (8) holds also for chiralities other than
zigzag tubes. Thus we expect exciton properties in tubes
of index (m, n) to depend primarily on whether mod(n —
m,3) = 1 or 2, independent of the chiral angle.

To quantify the exciton size, we use the root mean
square (rms) distance between electron and hole, Lg.
The size L, of the first exciton is shown in Fig. 2(a) as
a function of &, for four different tube diameters. The size
is approximately linear in . From Eq. (5), Lg/R is ex-
pected to be a function of mR/e. Combining this with the
observed linear dependence on &, we anticipate that the
exciton size will obey the scaling relationship

L
“l=A, +B
R L L

e
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This is confirmed in Fig. 2(b), which shows a linear
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FIG. 2 (color online). (a) First exciton rms e-h separation L
in four zigzag tubes (13,0), (19,0), (25,0), and (31,0). The
solid lines are the best linear fits. The slope k scales approxi-
mately as m~!, the product km; (in a.u.) equals 0.167, 0.160,
0.157, and 0.155 for tubes with diameter 1.0, 1.5, 2.0, and
2.5 nm, respectively. (b) The linear scaling of L;/R with
e/mR in semiconducting tubes of all possible chirality with
d = 1.0-2.5 nm, and & = 2-15. The solid line is the best fit to
Eq. (9) to the results in the range € = 4, giving A; = 2.13 and
B; = 0.174 (for m and R in a.u.). The rms discrepancy between
the fit and the full calculations is 2% for the subset of data
having £ = 4 or e/mR* = 9.5.
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dependence of L;/R on &/m R in all semiconducting
tubes with d = 1.0-2.5 nm, for all chiralities.

The exciton size directly affects observable quantities
such as the exciton oscillator strength and the radiative
lifetime. The exciton oscillator strength is proportional to
the probability to find an electron and a hole at the same
position [19]. In 3D semiconductors this is inversely
proportional to the exciton volume 1/L3. In the case of
nanotubes the electron and hole wave functions are con-
fined in two dimensions and therefore the oscillator
strength should be inversely proportional to the exciton
size L.

Typical optical absorption spectra are shown in
Figs. 3(a)-3(c), calculated for a (19, 0) tube in different
dielectric media. As & increases, the spectral function
converges to the noninteracting limit. For & = 10, the
spectral weight transfer to the first and second excitons,
as a fraction of the total spectral weights for first and
second bands in the noninteracting limit, is 71% and 55%,
respectively. The second exciton resonance is more bound
than the first, by 63 versus 43 meV. The higher spectral
weight transfer to the first exciton is due not to stronger
binding, but rather to the smaller band gap A;.

The probability argument [19] along with Eq. (4) sug-
gest the following scaling relation for the exciton oscil-

lator strength:
I A, ( B,R)
— = 1——) 10

Iy A’L\R L, (19)

where [ is the spectral weight of the first band for non-
interacting particles. The second term is a higher order
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FIG. 3 (color online). Absorption spectra g, of (19, 0) tube in
dielectric environment (a) & = oo (equivalent to no e-h inter-
action), (b) € = 10, (c) € = 4. (E, is the unknown self-energy
shift.) Note expanded scales for dotted lines in continuum
region in (b) and (c). The fractional spectral weight transfer
to the first exciton is 7;/I, = 0, 0.71, and 0.95, respectively.
Spectra are broadened with a Gaussian width of 0.0125 eV.
(d) The scaling of spectral weight transfer to the first exciton,
I, in all semiconducting tubes with d = 1.0-2.5 nm and ¢ =
2-15 and all possible chiralities. The best fit to Eq. (10)
(rms difference 3.5%) is obtained with A; = 1.22 eV? nm?
and B; = 1.61.
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correction due to the band mixing and the nonconstant
band-to-band optical density. Figure 3(d) confirms this
scaling. While L, is not directly observable, the figure is
virtually unchanged whether we use the actual calculated
L, values or the scaling expression Eq. (9) for L;. Thus
1,/1, obeys rather well an explicit scaling relationship
with /Rm.

The radiative lifetime of the excitons in carbon nano-
tubes is a key factor for possible applications in photonics
and optoelectronics. The radiative lifetime of an exciton
is inversely proportional to its oscillator strength [20].
In the regime of large binding (¢ < 3), I; = I,. Then
the oscillator strength per atom is almost independent
of tube diameter and chirality, and is equal to f, =
(0.014 eV 1E,.

We emphasize however that the radiative lifetime and
luminescence efficiency of nanotubes involve other fac-
tors as well. In principle, a single exciton coherently
captures spectral weight from a macroscopic region
[21], so the lifetime of an exciton actually depends on
the coherence length in the nanotube, which in turn
depends on environment and temperature. (If the coher-
ence length is sufficiently large, other length scales such
as tube length or photon wavelength can become impor-
tant.) Another important factor is that electrons and holes
are relatively unlikely to form optically active excitons,
because there are far more excitons that are optically
inactive. These include triplet and other dipole-forbidden
excitons at lower energy than the optically active exciton.
Most importantly, only a tiny fraction of excitons have a
total momentum compatible with photon emission, so
phonon scattering plays an important role [22].

In conclusion, we have calculated optical spectra of
carbon nanotubes including the electron-hole Coulomb
interaction by solving the Bethe-Salpeter equation (1) in a
tight-binding wave function basis set. We find scaling
relations with respect to the tube radius and dielectric
constant g, for the binding energy [Eq. (7)], exciton size
[Eq. (9)], and oscillator strength [Eq. (10)]. Thus the
absorption and emission properties depend on the dielec-
tric media in which the nanotube is placed. We find a
strong dependence on tube index (chirality), but only
via the effective mass. This depends strongly on whether
mod(n — m, 3) = 1 or 2, but is otherwise insensitive to
the chiral angle.

The authors thank M. Freitag, T. Heinz, M. Hybertsen,
S.G. Louie, G. Mahan, and E Wang for helpful
discussions.
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