
P H Y S I C A L R E V I E W L E T T E R S week ending
25 JUNE 2004VOLUME 92, NUMBER 25
Lattice Theory for Low Energy Fermions at Nonzero Chemical Potential
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We construct a lattice theory describing a system of interacting nonrelativistic spin s � 1
2 fermions at

nonzero chemical potential. The theory is applicable whenever the interparticle separation is large
compared to the range of the two-body potential and does not suffer from a sign problem. In particular,
the theory could be useful in studying the thermodynamic limit of fermion systems for which the
scattering length is much larger than the interparticle spacing, with applications to realistic atomic
systems and dilute neutron gases.
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Carlo method to extract the parameter �, defined as the
energy per particle relative to the value for a noninteract-
ing Fermi gas. Since this approach is variational, the

inverse temperature � � N	. The fermion fields at site n
are denoted by  n and  n and are independent, two-
component Grassmann spinors.
Introduction.—In this Letter we consider dilute fer-
mion systems with attractive interactions, for which the
effective range for two-body scattering is much less than
the interparticle spacing. Such systems are characterized
by a dimensionless number � � �an1=3�, where a is the
two-body scattering length , and n is the density. Such
systems are well known to exhibit fascinating nonpertur-
bative behavior. For � small and negative (weak attrac-
tion), one finds the BCS solution with pairing and
superconductivity.With� small and positive, correspond-
ing to strong attraction with a two-body bound state well
below threshold, the bound pairs will Bose-Einstein con-
dense. In each of these cases, the behavior is nonpertur-
bative, but since the effective interaction is weak, the
system can be successfully described in a mean-field
approximation. On the other hand, dilute fermion systems
for which the parameter j�j is large are not amenable to
analytical treatment. Physical realizations include both
dilute neutron gases (the neutron-neutron scattering
length is more than an order of magnitude greater than
its effective range) as well as cold, dilute gases of fermi-
onic atoms tuned to be near a Feshbach resonance [1–3].
Recently there has been intense interest in exploring such
systems experimentally [4]. In the limit that j�j ! 1 one
expects to see universal behavior, so that the same di-
mensionless physical constants will apply equally to the
atomic and nuclear systems.

Because of the prospects of exploring ultracold fermi-
onic atoms at large j�j experimentally, it is of great
interest to understand such systems theoretically, which
necessitates numerical studies. A recent numerical study
of dilute fermions at large j�j is found in Ref. [5]. The
authors of that work used the fixed-node diffusion Monte
0031-9007=04=92(25)=257002(4)$22.50
result � � 0:44� 0:01 obtained is an upper bound on
the true quantity.

The calculation [5] is performed at fixed particle num-
ber N, up to N � 38. It is desirable to have a numerical
approach which is not variational, and which can probe
thermodynamic properties of dilute fermion gases, such
as the critical temperature for the pairing transition. In
this Letter we propose such a method, in which the
fermions live on a spacetime lattice at nonzero chemical
potential. We exploit the fact that all relevant scattering
information at low density is contained in the scattering
length, so that the complicated two-body interactions can
all be replaced by an effective field theory with a single
attractive four-fermion interaction. While lattice formu-
lations of interacting fermions at finite density typically
encounter a ‘‘sign problem,’’ we show that is not the case
here. There is another issue that requires attention,
however, relating to possible instabilities introduced
by a purely attractive interaction. We perform an analyti-
cal calculation that suggests such instabilities may be
avoided.

The lattice formulation of the effective theory.—To
construct a lattice version of the continuum theory, we
first analytically continue to Euclidean spacetime, repre-
sented by an N	 � N3

s lattice, where N	 and Ns are the
number of sites in the time and space directions, respec-
tively. We set �h � 1 and measure all dimensionful quan-
tities in units of the lattice spacing, which is taken to be
the same in the space and time directions. We impose
periodic boundary conditions in the space directions and
antiperiodic boundary conditions in the time direction.
This allows the Euclidean path integral to be inter-
preted as the finite temperature partition function, with
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The continuum Euclidean action for free fermions at
nonzero chemical potential is

R
d4x �@	 	r2=2M	

�� . The corresponding lattice action is S0 �P
n n�K0 �n, where

�K0 �n � � n 	 e� n	êe0� 	
X3
i�1

� n�êei 	 2 n �  n	êei�

2M
:

(1)

In these expressions êe� is a unit vector in the � direction
(� � 0 corresponding to Euclidean time 	), M is the
fermion mass, and � is the chemical potential, which is
treated like the time component of an imaginary gauge
field. This follows the prescription in Ref. [6] (except that
we have the opposite sign for �) and ensures that the free
energy does not have spurious cutoff dependence.

The free propagator computed from S0 is

G0�	;p� �
�	p

�1� 	p=M��1� �N	p �
�

�
1 if 	  0
	�N	p 	 < 0

;

(2)

where

�p �
e�

1� 	p=M
; 	p � 2

X3
i�1

sin2
pi
2
: (3)

The time 	 is an integer, corresponding to propagation by
	 lattice spacings in the time direction, while the mo-
mentum components are given by pi � p̂pi�2�=Ns�, with
p̂pi being integers in the range 	Ns=2< p̂pi � Ns=2.

Note that for �< 0, �p < 1 and in the limit N	 ! 1
(zero temperature) �N	p ! 0 and there is no propagation
backward in time,

G0�	;p� ���������������!
�<0;N	!1

�	p��	�

�1� 	p=M�
; (4)

indicating the absence of antiparticles or holes in this
nonrelativistic theory at zero density.

Fermion interactions can be represented by an effective
field theory with a four-fermion interaction, the strength
of which is tuned to reproduce the physical two-body
scattering length. On our lattice we generate the interac-
tion by means of a nonpropagating scalar auxiliary field
’ coupled to the fermions. By situating ’ along time
links of the lattice, we can eliminate fermion loops lying
on surfaces of constant Euclidean time, simplifying the
analysis. Since one is interested in pairing correlations, it
is convenient to also introduce a constant complex source
J for fermion pairs so that one can study the pairing
transition at finite volume. These considerations lead us
to the action

S �
X
n

� n�K �n �
1

2
m2’2

n �
1

2
�J n 2 n � H:c:��;

(5)
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�K �n � �K0 �n 	 ’ne
� n	êe0 :

An important property of this theory is that, after
integration over  and  , the remaining integral over ’
has positive semidefinite measure, so that Monte Carlo
integration methods may be applied. This result is easy to
see if the source J is neglected, in which case integrating
out the fermions yields a factor of detK. K is trivial in
spin space and can be written as K � ~KK � 1s, where 1s is
the two-dimensional identity matrix acting on spinor
indices, and ~KK acts only in coordinate space. Thus detK �
�det ~KK�2, which is positive semidefinite since ~KK is a real
operator.

Including the constant source J, the fermionic action
may be rewritten as 1

2�
TA�; where we have defined

� �

�
 

i 2 
T

�
; A �

�
	iJ Ky

K 	iJ�

��
i 2 0
0 i 2

�
:

(6)

Each block in this matrix is 2N dimensional, where N is
the number of lattice sites; K acts trivially on spinor
indices, the Pauli matrix  2 acts trivially on coordinate
indices, and J is proportional to the identity matrix in
both spaces. Note that KT � Ky since K is real. In-
tegrating out the fermions yields a purely bosonic theory,
where the path integral over the ’ field is weighted by
exp��	m2=2�

P
n’

2
n� times the pfaffian of A:

P f�A� �

�������	iJ ~KKy

~KK 	iJ�

��������  jJj2 � ~KKy ~KKj: (7)

Each block in the above expression is N dimensional.
Thus Pf�A� is real and positive semidefinite for all real
values of J, �, and ’n, up to the irrelevant constant
sign � �	1�N , and there is no sign problem encountered
with this lattice formulation. Similar analyses exist
for two flavor QCD [7] and the Nambu–Jona-Lasinio
model [8].

We have introduced in Eq. (5) a new parameter m2,
which determines the strength of the two-body interac-
tion. This parameter can be related to the two-body
scattering length a by summing the ladder diagrams
with ’ exchange between the fermions at zero external
momenta, zero temperature, infinite volume, and zero
chemical potential, �! 0	; the result may be equated
to 4�a

M (see [9]). The result is

m2

M
� 	

1

4�a
� L�M�; (8)

where L�M� is given by the integral
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FIG. 1 (color online). The density phase diagram in the
�M; a	1� plane at � � 0 in the mean-field approximation for
M  0:1. The curve corresponds to a first order phase transition
in the expectation value of the fermion number density n, with
n � 0 in the lower region and n � O�1� in the upper region.
The desired continuum physics exists only in the lower phase.
The black region in the upper left corner is inaccessible for real
scalar-fermion coupling.

P H Y S I C A L R E V I E W L E T T E R S week ending
25 JUNE 2004VOLUME 92, NUMBER 25
L�M� �
Z d3p

�2��3
X1
	�0

�G0�	;p��2

�
1

2

Z d3p
�2��3

1

	p � 	2
p=2M

; (9)

where the integral is over the Brillouin zone, jpij � �.
Note that, since m2 must be positive, scattering lengths

satisfying 1
a > 4�L�M� are inaccessible in our theory

without introducing an imaginary coupling for ’ and
sacrificing positivity of the measure. These values for
the scattering length correspond to two-body bound states
with O�1=M� binding energy in lattice units, which are
not of physical interest in any case.

Phase structure of the lattice theory.—An interacting
continuum limit of our lattice theory requires that we be
able to find a point in the phase diagram where both the
interparticle spacing n	1=3 and the scattering length a
diverge in lattice units. It does not require that the massM
vanish, however. From Eq. (8) we see it is always possible
to tune the parameter m2 so that a diverges. What is less
obvious is that we can then choose � so that the particle
density n becomes arbitrarily small. In general, one
would expect to find a line of first order phase transitions
in the �M; 1a� plane for sufficiently large values of 1

a ,
corresponding to a strongly attractive four-fermion inter-
action. This follows from the well-known result in the
continuum that a fermion system at fixed chemical po-
tential with a purely attractive interaction has no ground
state, being unstable against the formation of infinitely
dense matter. On the lattice, where the maximum attain-
able density is limited, one would expect that at � � 0
the ground state of the system would jump from n � 0 to
n � O�1� in lattice units for a sufficiently strong attrac-
tion. The existence of a continuum limit requires that for
some mass M the n � 0 phase at � � 0 persists when
1=a! 0.

Therefore the first thing to compute in lattice theory is
the relation between the chemical potential � and the
fermion density n. For n we take

n � h ne
� n	êe0i � m2h’ni �

R
�d’�P �’��m2’n�R

�d’�P �’�
;

(10)

where P �’� � �e�	m
2=2��n’2

nPf�A��, and Pf�A� is given
in Eq. (7). This definition of n is more convenient than
@ lnZ=@�, and the two definitions agree when either ex-
pression is small.

To compute the density n requires a full-scale un-
quenched simulation, which is beyond the scope of this
Letter. However, it is instructive to determine n in the
leading semiclassical (mean-field) approximation. We
compute the effective potential obtained by integrating
out the fermions, assuming a classical background h’i
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field; we then determine h’i to be the value that mini-
mizes the effective potential.

Setting J � 0 in Eq. (7) (and dropping the sign  ), we
can compute Pf�A� exactly for constant ’:

P f�A� � det ~KKy ~KK

�
Y
fp̂pig

��1� 	p=M�N	 � eN	��1� ’�N	�2

� e	N	N
3
sV �’�; (11)

V 1�’� � 	
2

N3
s

X
fp̂pig

�
ln�1� 	p=M�

�
lnf1� ��p�1� ’��N	g

N	

�
:

In the N	;Ns ! 1 limit (large volume, zero tempera-
ture), this becomes

V 1�’� � 	2
Z
BZ

d3p
�2��3

� fln�1� 	p=M� � ln��p�1� ’��

� ���p�1� ’� 	 1�g: (12)

The momentum integration in the above expression is
over the Brillouin zone, pi 2 �	�;��. The first term in
V 1 is just the contribution from free fermions; the sec-
ond term is the quantum correction to the tree level
potential, V 0�’� �

1
2m

2’2. In the mean-field approxi-
mation, the expectation value h’i is given by the mini-
mum of the effective potential V eff�’� � �V 0 �V 1�.

The effective potential yields the� � 0 phase diagram
displayed in Fig. 1. The horizontal axis is the fermion
mass M, while the vertical axis is the inverse scattering
length, a	1. Moving up the vertical axis corresponds to
257002-3
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FIG. 2 (color online). Density n as a function of � for M � 1
and a! 1. This figure exhibits a first order phase transition as
a function of �. The small � phase is where a continuum limit
is defined.
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increasing the strength of the two-body attraction, and
a	1  0 describes systems with a two-body bound state.
The curve corresponds to a jump in the fermion density
from zero in the lower region to O�1� in the upper region.
We see that there is a region far from the phase transition
for M� 1 that allows small a	1 of either sign. Thus one
may expect to be able to perform simulations of fermions
at finite density, where both the interparticle spacing
n	1=3 and scattering length jaj are large compared to
the lattice spacing, without requiring jan1=3j to be small.

If one were to plot the chemical potential � along a
third axis of the phase diagram, then the critical line we
have displayed would become a critical surface. In Fig. 2
we show the fermion number density n plotted as a
function of �, for fixed M � 1 and a	1 � 0. One sees
that there is a regime where n grows slowly with �, but
that, at a critical chemical potential, the fermion density
jumps discontinuously as the trajectory crosses the criti-
cal surface.We see that, at least in the mean-field approxi-
mation, there is a large region in parameter space where
we can define continuum theories with any value of � �
�an1=3� we desire.

One of the first tasks of a full-fledged simulation will
be to determine the analog of Fig. 1 beyond the mean-field
approximation by evaluating the expression in Eq. (10)
and to show that a region in parameter space with an
interesting continuum limit persists. An interesting cal-
culation to pursue subsequently would be to map out the
critical temperature for the superfluidity phase transition
with order parameter h  i as a function of the dimen-
sionless quantity �. To do this, one would need to simu-
late the system at finite source J and to extrapolate to the
J � 0, infinite volume limit.

Discussion.—There are numerous ways in which the
lattice theory we have presented may be modified or
extended without sacrificing its crucial property of pos-
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itivity. Several obvious possibilities are (i) to include a
kinetic term for the ’ field, allowing for attractive fer-
mion interactions extended in space (for example, a
Yukawa interactions for the simulation of neutron matter,
for which p-wave interactions are expected to be impor-
tant [10]); (ii) the ’ field could be given derivative and
spin-dependent couplings, perhaps allowing one to in-
clude the contributions from the two-body effective range
or scattering in higher partial waves; and (iii) more fla-
vors can be introduced, which could provide an opportu-
nity to study the importance of three-body contact
interactions and the possibility of renormalization group
limit cycles [11–14].
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