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Mesoscopic Transport in Chemically Doped Carbon Nanotubes
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Electronic quantum transport is investigated in boron- and nitrogen-doped carbon nanotubes using
tight-binding methods correlated to ab initio calculations. The present technique accurately accounts for
both effects of dopants, namely, charge transfer and elastic scattering. Generic transport properties such
as conduction mechanisms, mean-free paths, and conductance scalings are derived for various
concentration of randomly distributed boron and nitrogen dopants. Our calculations allow direct
comparison with experiments and demonstrate that a small amount of dopants (<0:5%) can drastically
modify the electronic transport properties of the tube, which is certainly a key effect feature for
envisioning nanoelectronics.
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typically a few percent of dopants for metallic nanotubes
with mesoscopic length scales. In particular, K. Liu et al.

of an atomic substitution need to be accurately described.
Tight-binding methods are usually not suitable to predict
Since their discovery in 1991 [1], carbon nanotubes
(CNTs) have sparked off a tremendous amount of activi-
ties from basic science to applied technologies. In par-
ticular, depending on their geometrical helicity, CNTs
can be either metallic or semiconducting with an antici-
pated diameter-dependent energy gap scaling [2]. In ad-
dition to their unusual electronic spectrum, these systems
also exhibit remarkable quantum transport properties
[3,4], which present them as serious candidates for emerg-
ing nanoelectronics [5]. In view of incorporating CNTs
into real operational nanodevices (diodes, transistors),
CNT-based intramolecular junctions were proposed early
on [6]. Both theoretical [7] and experimental [5,8] studies
of such nanojunctions are full of promise.

In order to tailor the electronic properties of CNTs, the
Fermi level can be tuned by chemical doping [9]. Carbon
nanotubes doped either with nitrogen or boron [10–12]
substitutions have been synthesized. When substituting a
carbon atom, the boron atom (nitrogen) acts as an accep-
tor (donor) impurity in the nanotube, as revealed by
thermopower measurements [13]. First-principle studies
of the electronic structure [14] and quantum transport in
boron-doped (nitrogen) carbon nanotubes using the
Landauer [15] and Keldysh [16] formalisms have revealed
the presence of localized states around the substituting
impurity. These quasibounded states are responsible for
an enhancement of the backscattering for energies below
(above) the charge neutrality point. However, due to
computational limitations of the ab initio techniques,
these approaches have been so far restricted to short
devices containing a single doping atom. As a result,
little is known about intrinsic transport length scales at
the Fermi level in such hetero-atomic nanostructures.
First experimental transport measurements [17,18] have
been recently reported in boron-doped nanotubes with
0031-9007=04=92(25)=256805(4)$22.50
[17] describe electrical transport in boron-doped nano-
tubes by means of weak localization theory and estimate
mean-free paths in the order of 220–250 nm, for nano-
tubes with diameters in the range 17–27 nm and for a few
percent of boron dopants. In this Letter, generic transport
properties of boron- and nitrogen-doped nanotubes, such
as conduction mechanisms, mean-free paths and conduc-
tance scalings, are computed as a function of the density
of dopants.

Electronic calculations have been carried on large
structures (between 10 nm and 1 �m long), where only
the semiempirical Hamiltonians and order N techniques
are appropriate. Consequently, the zone folding (ZF)
technique has been used. This method is an orthogonal
tight-binding (TB) approach, which takes into account
only one orbital �p?� per carbon atom and describes
correctly the usual electronic properties of pristine car-
bon nanotubes (gaps, positions of Van Hove singularities,
Fermi velocity, etc. [2]). The presence of the gap, due to
the local curvature, in the band structure of ‘‘metallic’’
nanotubes [19] is not predicted by ZF calculations, but
since this work addresses doped systems, a truly metallic
behavior should be recovered.

Within this framework, the Hamiltonian operator
writes as follows:

ĤH �
XN
n�1

"
Hnnjnihnj �Hnp

X
p

jnihpj

#
; (1)

where the first sum runs on all the p? orbitals in the
system, while the second sum runs on the first neighbors
of the n site. In expression (1), the matrix elements Hnn
are the on-site energies and Hnp are the hopping integrals.

In order to apply this ZF technique to B- and N-doped
carbon nanotubes, the electronic properties in the vicinity
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FIG. 1. Electronic properties of a boron substitution in a
graphene sheet. (a) Isodensity plot of the last (half) occupied
band, at � point calculated with DFT-LDA. The plane is shifted
from the graphitic sheet (0.625 Å). Electronic density is mainly
distributed on the B atom, until the third neighbor. (b) The
renormalized atoms used our model are labeled: 1st, 2nd, and
3rd neighbors of the boron (B) atom. (c) Comparison between
the electronic band structures of the doped graphene sheet
calculated with DFT-LDA (left) and our modified ZF model
(right) with the renormalized on-site energies (see text).

TABLE I. Renormalized on-sites energies used in this work
(in eV). Hopping integral � � 2:72 eV and Fermi level EF �
"C for both cases.

"B="N "1 "2 "3 "C

B doping �2:77 	0:16 �0:21 �0:39 	1:56
N doping 	2:02 	3:06 	1:98 	2:12 	0:08
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the charge transfer, especially in the case of hetero-
atomic substitutions. However, by adding a corrective
electrostatic potential to the on-site energies, this tech-
nique can handle electric fields, charge transfer, or elec-
tric dipole moments. The correction (added to the on-site
energies) is usually calculated by a self-consistent loop on
the electric charge [20]. Unfortunately, as the present
O�N� technique does not allow one to use such a self-
consistent scheme, an alternative approach is explained
below for the case of a B-doped CNT (N doping follows
an analogous procedure)

In our modified ZF model, the value of the matrix
elements in Eq. (1) are supposed to vary, depending on
the involved species. These elements are labeled "C, "B,
etc., (for the on-site energies Hnn) and �CC, �BC, etc., (for
the hopping integrals Hnp). Practically, these parameters
were defined by fitting the ZF band structure on DFT-
LDA (density-functional theory, local-density approxi-
mation) calculations [21]. In this ab-initio approach,
standard norm-conserving pseudopotentials were used,
and the cutoff energy for the plane waves expansion
was set to Ecut � 30 hartree. Since the curvature of the
graphene sheet is neglected within ZF calculations, the
LDA calculations were performed on flat ‘‘graphenelike’’
systems. At first, the electronic structure of a supercell
containing 31 carbon atoms and a single B atom was
studied within a spin-averaged LDA approach in order
to simulate the electronic states of a doped carbon system
in the vicinity of the B impurity. As shown in Fig. 1(a),
the electronic density ��r� for the last (half) occupied
band is distributed only on the p? orbitals for atoms
located close to the impurity, up to the third neighbor of
the B atom. This localization of the HOMO-LUMO
(highest occupied molecular orbital, lowest unoccupied
molecular orbital) band allows one to consider that the
correction on the on-site energies effects carbon atoms
only up to the third neighbors of the impurity. Moreover,
this result suggests that the hopping integral between sites
will not be effected by the charge transfer in assumption
that the p atomic orbitals are not polarized by the local
electric field. In addition, the boron atom is supposed to
be ‘‘carbonlike’’ [22], i.e., �CC � �BC � �. The geome-
try of the model is presented in Fig. 1(b), where the boron
and the renormalized carbon atoms are labeled. In this
situation, only six parameters require adjustment: the
unique hopping integral �, the carbon and boron on-site
energies "C and "B, and the renormalized carbon on-site
energies "3, "2, and "1 [third, second, and first neighbors
of the boron atom, respectively, as shown in Fig. 1(b)].

These adjustments were performed using a least square
energy minimization scheme between LDA and ZF band
structures. At first, the LDA electronic structure of an
isolated graphene sheet was used to fit the hopping. Its
value (see Table I) was kept further as a constant. As only
a low density of boron atoms in a graphene sheet is
considered, and given that this supercell is supposed to
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be in electronic equilibrium with the surrounding nano-
tube, the chemical potentials (Fermi energies) of the two
subsystems have to be equal. Since the Fermi energy of a
graphene sheet (or a nanotube described with ZF tech-
nique) is "C, this leads to "C � EF;supercell � EF;CNT. The
band structure obtained with the optimal parameters is
compared to the LDA band structure in Fig. 1(c). These
optimal parameters for B-doped (and N-doped) are given
in Table I.

In order to fit with experimental data [23], a global
scaling is applied to the parameters, recovering � �
�0 � 2:9 eV and the whole spectrum is shifted to have
EF � 0 eV. As shown in Fig. 2(a), the density of states
(DOS) of a (0.1%) B-doped (10,10) CNT exhibits the
typical acceptor peak �E1�, in agreement with previous
ab initio studies [15].

Conduction properties of a single B CNT (or N CNT)
are estimated using the Kubo formalism. This approach is
256805-2
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FIG. 3. Scaling of the mean-free path ‘e at the Fermi level,
for a B-doped �n; n� nanotube. Left: in the case of a (10,10)
nanotube with various boron concentrations, ‘e behaves like the
inverse of the doping rate. Right: for a fixed concentration of B
atoms, ‘e is roughly a linear function of the diameter.
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FIG. 2. Electronic diffusion in a (0.1%) B-doped (10,10)
CNT. (a) Density of states illustrating the characteristic accep-
tor peak located below the Fermi level (here EF � 0).
(b) Diffusivity DE�t� given by Eq. (4), as a function of time
for the three energies, indicated by arrows in (a). The differ-
ence of diffusion, according to the conduction regime is clear:
ballistic (E2), diffusive (EF), and localized (E1, for which the
coefficient is 10 times magnified). (c) The diffusivity DE
plotted as a function of energy (at the time t � 200 "h=�0)
for the same B-doped CNT (solid line) and a pristine CNT
(dashed line).
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based on the fluctuation-dissipation theorem, which es-
tablishes that the nonequilibrium linear response (con-
ductivity) is related to the equilibrium correlation
function of the carrier velocities. In the real-space ap-
proach the transport properties are associated with the
measure of the quadratic time spreading �XE�t� ������������������
hX2�t�iE

p
of the electrons [24]. Following previous works

[25], the spreading reads

hX2�t�iE �
hwpjAy�t���E	 ĤH�A�t�jwpi

hwpj��E	 ĤH�jwpi
; (2)

where A�t� � �X̂X; exp�	iĤHt��, ĤH is the Hamiltonian op-
erator, and X̂X is the position operator in the Schrödinger
representation. The expectation values are calculated on
wave packets jwpi that are treated as random-phase states
[26]:

jwpi �
1����
N

p
XN
n�1

e2i���n�jni; (3)

where ��n� is a random number in the �0; 1� range. The
choice of an orthogonal basis set (in the ZF approach)
simplifies the expectation value of the position operator,
assuming that hnjX̂Xjpi � �npxn. Finally, to obtain the
evolution of A�t�jwpi, the time-dependent Schrödinger
equation is numerically solved by expanding the evolu-
tion operator on a Chebychev polynomials basis set
[24,27], whereas the spectral measures are computed by
recursion [28].

The spreading (2) is the key quantity as it is directly
related to the diffusion coefficient (or diffusivity) whose
time dependence fully determines the transport mecha-
nism and the conductance scaling:
256805-3
DE�t� � hX2�t�iE
1

t
: (4)

In Fig. 2, three different transport regimes are illus-
trated for a (0.1% ) B-doped nanotube. At Fermi energy
(EF), while the density of states [in Fig. 2(a)] remains
unaffected, the diffusion coefficient [in Fig. 2(b)] satu-
rates at long times where D�EF; t� ! D0 � ‘evF, indicat-
ing a diffusive regime. In contrast, at the resonance
energy (E1) of the quasibounded states, the diffusivity
exhibits an �1=t behavior, typical of a strong localization
regime. Finally, at energy E2 above the Fermi level, the
electronic conduction remains nearly insensitive to dop-
ants, as shown by the quasiballistic diffusion law. In
Fig. 2(c), the energy-dependent diffusivity clearly mani-
fests such asymmetry in conduction.

From a physical point of view, the relevant information
is that a low density of dopants yields diffusive regimes,
with a mean-free path decreasing linearly with dopant
concentration following Fermi golden rule (Fig. 3, left)
and increasing linearly with nanotube diameter (Fig. 3,
right) following theoretical predictions based on
Anderson-like disorder modeling [3]. Moreover, in very
good agreement with experimental data [17], from our
calculations we estimate mean-free paths in the order of
175–275 nm for boron-doped nanotubes with diameters
in the range 17–27 nm and 1.0% of doping.

The conductance scaling in the quantum coherent re-
gime [29] is now analyzed in both boron and nitrogen
doping cases. From the Kubo formula, the generic con-
ductance of a device of length Ldev writes [30]

G�E;Ldev� � 2e2n�E�
DE� dev�
Ldev

; (5)

where n�E� is the electronic DOS per unit length and
 dev�E� is the time spent by the wave packet (at the
considered energy E) to spread over a distance equal to
Ldev. Following the fluctuation-dissipation framework, it
is also equivalent to the time needed by an electron to
travel through the device [31].
256805-3
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FIG. 4 (color online). Quantum conductance of a device made
from a single (10,10) nanotube containing 0.1% of boron (left)
or nitrogen (right) impurities. The conductance is plotted as a
function of the energy, for different lengths of the device. A
decrease of the conductance is observed near the energies of
donor/acceptor states and near the Van Hove singularities.
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The main remarkable conductance features for B- and
N-doped (10,10) nanotubes are illustrated in Fig. 4. In
both case, as the typical length Ldev increases from the
nanometric scale (�10 nm) to the mesoscopic scale
(�1 �m), the quantum interference effects beyond the
diffusive regime are correspondingly enhanced. A strong
asymmetric damping of the electronic conductance
follows.

Moreover, our results show that the generic conduc-
tance G�E;Ldev� of B (N) CNT at Fermi level exhibit a
positive (negative) derivative with respect to energy. Such
a difference between N- and B-doped CNTs suggests that
the thermopower measurements originate from a diffu-
sion mechanism only [13]. Gate-dependent studies on
individual undoped carbon nanotubes have recently re-
vealed a quantum connection between conductance
modulations and thermopower [32]. Similar studies on
chemically doped CNTs would be desirable to confirm
our theoretical predictions.

In conclusion, the energy-dependent quantum trans-
port properties of chemically doped carbon nanotubes
have been investigated. By combining first principle
methods to tight-binding approaches, the mean-free path
and the length-dependent conductance scalings were de-
rived by simultaneously taking into account the chemical
nature of impurities together with their random distribu-
tion over micrometer length scales. This gives a theoreti-
cal framework for understanding experiments.
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