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Spectral Function of the One-Dimensional Hubbard Model away from Half Filling
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We calculate the photoemission spectral function of the one-dimensional Hubbard model away from
half filling using the dynamical density-matrix renormalization group method. An approach for
calculating momentum-dependent quantities in finite open chains is presented. Comparison with exact
Bethe ansatz results demonstrates the unprecedented accuracy of our method. Our results show that the
photoemission spectrum of the quasi-one-dimensional conductor TTF-TCNQ provides evidence for
spin-charge separation on the scale of the conduction bandwidth.
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tron interaction [9,10] and in the low-energy limit de- scaling analysis. For a chain with L sites and N � nL
The Luttinger liquid theory describes the ground
state and asymptotic low-energy properties of one-
dimensional correlated metals [1]. Two characteristics
of a Luttinger liquid are the absence of quasiparticles
predicted by the Fermi liquid theory of normal metals
and the occurrence of independent spin and charge ex-
citations. In principle, these features can be observed
in the spectral function [2,3] which corresponds to the
spectrum measured in angle-resolved photoemission
spectroscopy (ARPES) experiments. In real materials,
however, the low-energy properties are likely to be gov-
erned by three-dimensional physics. One-dimensional
physics is observed only above a crossover energy scale,
even in the most strongly anisotropic materials. Conse-
quently, it has proven difficult to observe unambiguous
evidence for Luttinger liquid physics in experiments prob-
ing only low-energy properties of quasi-one-dimensional
conductors.

A recent ARPES experiment for the quasi-one-
dimensional organic conductor TTF-TCNQ (tetra-
thiafulvalene tetracyanoquinodimethane) has revealed
significant discrepancies from the predictions of Fermi
liquid theory and conventional electronic structure cal-
culations [4,5]. The experimental spectrum dispersion
can be consistently mapped over the scale of the con-
duction bandwidth onto separated spin and charge exci-
tation bands of the one-dimensional Hubbard model [6]
away from half filling. This is one of the strongest pieces
of experimental evidence for spin-charge separation and
thus for Luttinger liquid physics in low-dimensional ma-
terials. However, a direct comparison of the experimental
ARPES spectrum with the Hubbard model spectral func-
tion has not been possible yet.

The Hubbard model was solved exactly 36 years ago
[7] and the dispersion of its excitation bands can be
computed [8]. Nevertheless, the photoemission spectral
function can be calculated exactly only in the limiting
cases of noninteracting electrons or infinitely strong elec-
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scribed by the Luttinger liquid theory. Various numerical
methods have provided a qualitative picture of spectral
functions in the Hubbard model but exact diagonaliza-
tions [10,11] are limited to too small systems to inves-
tigate the thermodynamic limit while other approaches
[12,13] are based on various approximations of uncertain
accuracy.

We have determined the photoemission spectral
function of the one-dimensional Hubbard model with pa-
rameters appropriate for TTF-TCNQ using the dynamical
density-matrix renormalization group (DDMRG) method
[14]. A novel approach is used to calculate momentum-
dependent quantities in finite open chains. This allows us
to investigate large systems almost exactly and to make a
direct comparison of the Hubbard model spectral weight
distribution with the experimental TTF-TCNQ spectrum.
To demonstrate the accuracy of our method and to iden-
tify excitations contributing to the photoemission spec-
tral function we compare our numerical results with exact
Bethe ansatz results.

A minimal model to describe the electronic properties
of TTF-TCNQ is the one-dimensional Hubbard model
defined by the Hamiltonian
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Here ĉc�l;� and ĉcl;� are, respectively, creation and annihi-
lation operators for electrons with spin � �"; # at site l �
1; . . . ; L (representing a �-type Wannier orbital centered
on a TCNQ molecule), n̂nl;� � ĉc�l;�ĉcl;�, and n̂nl � n̂nl;" � n̂nl;#.
Appropriate parameters for TTF-TCNQ are an on-site
Coulomb repulsion U � 4:9t and a hopping integral t �
0:4 eV [4,5]. (These values are appropriate for the TTF-
TCNQ surface, which is probed in ARPES experiments,
not for bulk TTF-TCNQ.) Although the filling of the
TCNQ band is n � 0:59, we use a slightly different filling
n � 0:6 in our simulations to facilitate the finite-size-
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FIG. 1. Line shapes (left) and gray-scale plot (right) of the
spectral function A�k;!� for 0< k< kF calculated with a
broadening � � 0:1t using DDMRG.
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electrons the chemical potential 	 is chosen so that
E0�N � 1� � E0�N � 1�, where E0�N � 1� is the ground
state energy with N � 1 electrons. Thus the Fermi energy
is �F � 0 in the thermodynamic limit L! 1.

The photoemission spectral function A�k;!� is the
imaginary part of the one-particle Green’s function

A�k;!� �
1

�
Imh 0jĉc

y
k;�

1

ĤH �!� E0 � i�
ĉck;�j 0i; (2)

where j 0i and E0 are the ground state wave function and
energy of the Hamiltonian (1). This function can be
calculated for finite broadening � and system sizes L
using the dynamical DMRG method [14]. The spectral
properties in the thermodynamic limit can be determined
using a finite-size-scaling analysis [14] with an appropri-
ate broadening ��L�. Here we have used �L � 9t and
system sizes up to L � 150 sites. DMRG truncation errors
are negligible for all results presented here (up to m �
400 density-matrix eigenstates have been kept per block
in our calculations.)

The operators ĉck;� are usually defined using Bloch
states [i.e., the one-electron eigenstates of the
Hamiltonian (1) with periodic boundary conditions
ĉcl�L;� � ĉcl;� in the noninteracting limit (U � 0)]: ĉck;� �
L�1=2P

le
�iklĉcl;� with momentum k � 2�z=L for inte-

gers �L=2< z � L=2. Since DMRG calculations can be
performed for much larger systems using open boundary
conditions, it is desirable to extend the definition of the
spectral function A�k;!� to that case. Therefore, we use
the eigenstates of the particle-in-a-box problem [i.e., the
one-electron eigenstates of the Hamiltonian (1) on an
open chain for U � 0] to define the operators
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�������������
2

L� 1

r X
l

sin�kl�ĉcl;� (3)

with (quasi-)momentum k � �z=�L� 1� for integers 1 �
z � L. Both definitions of ĉck;� should be equivalent in the
thermodynamic limit L! 1. Tests for finite systems up
to L � 32 sites show that both approaches are consistent
except in the asymptotic Luttinger liquid regime [i.e., at
low energy (j!j � 1=L) close to the Fermi vector kF �
�n=2 (jk� kFj � 1=L)]. Therefore, open chains and the
definition (3) can be used to investigate the spectral
function A�k;!�. In this Letter we present results ob-
tained using only this approach.

Figures 1 and 2 show the spectral function calculated
with DDMRG in a chain with L � 90 sites. Since the
spectrum is symmetric, A��k;!� � A�k;!�, we show
results for k � 0 only. Three dispersing features are
clearly visible in the spectrum for jkj< kF in Fig. 1. At
small binding energy �! there are intense peaks with a
narrow dispersion (from! � 0 at k � �kF to! � �0:5t
at k � 0). This feature corresponds to the spinon branches
in the Luttinger liquid regime. Note that both spinon
branches (for k < 0 and k > 0) join at k � 0 and thus
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form just one spinon band. At energies ! lower than the
spinon band there is a second spectral feature made of
peaks with less spectral weight and a wider dispersion
(from ! � 0 at k � �kF to ! � �1:5t at k � 0). It
merges with the spinon band for k! �kF because of
the finite broadening. This feature corresponds to the
two holon branches of the Luttinger liquid theory. The
third spectral feature is made of weaker peaks and has an
(apparently) inverted dispersion (starting at ! � �1:5t
for k � 0 and reaching ! � �2:2t at k � �kF). These
so-called shadow bands [9] are actually the continuation
of the holon bands. Thus the second and third features
correspond to two holon-shadow bands crossing at k � 0.
While the spectral weight of the structure associated with
the spinon and holon bands remains relatively constant
for all jkj< kF, the shadow bands rapidly lose intensity
with increasing k.

For jkj > kF the spectral weight is much lower than for
jkj< kF (see Fig. 2). Nevertheless, one can observe four
dispersive structures in the spectral function. First, the
shadow band continues from k � �kF to �3kF, but its
energy increases with jkj and approaches zero for jkj �
3kF. Weaker peaks are also visible at higher energy !
than the shadow band for kF < jkj< 2kF. The corre-
sponding binding energy �! increases from about zero
at k � �kF to about 1:7t at k � �2kF, where this second
feature meets the shadow band and apparently disappears.
The third dispersing feature corresponds to very weak
peaks (not visible on the scale of Fig. 2) with energies
from ! � �3:7t at k � � to ! � �2:2t at jkj � 2kF.
Note that, despite its weakness, this feature corresponds
to the spectrum maximum for k � �. The last feature is a
sharp drop of the spectral weight at low energy. It goes
from ! � �3:25t at jkj � kF to ! � �4:6t at k � �. We
interpret this drop as the lower edge of the photoemission
256401-2



FIG. 2. Line shapes (left) and gray-scale plot (right) of the
spectral function A�k;!� for kF < k < � calculated with a
broadening � � 0:1t using DDMRG.
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spectrum. The little spectral weight found at lower energy
! is due to the finite broadening � used in our DDMRG
calculations. Note that these third and fourth spectral
features are not visible for small jkj because they are
too close to the broadened and comparably much stronger
peaks belonging to other structures.

Figure 3 shows the dispersion !�k� of the various
features found in the DDMRG spectrum for the 90-site
chain. One clearly sees that the shadow bands are just the
continuation of the holon bands. The dispersions !�k�
should naturally correspond to specific excitation bands
��k� of the Hubbard model. To identify these excitations
we have calculated the excitation energies ��k� for the
removal of an electron in the Hubbard model on a 90-site
chain using the Bethe ansatz solution [8]. In Fig. 3 we
show those excitation bands ��k� which correspond to the
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FIG. 3. Dispersion !�k� of the structures observed in the
DDMRG spectral function: spinon band (squares), holon-
shadow bands (circles), secondary holon bands (diamonds),
lowest ‘‘4kF’’-singlet excitations (pluses), and lower (open
triangles) and upper (solid triangles) spectrum edges. Lines
show dispersions ��k� obtained from the Bethe ansatz solution.
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dispersing features found in the DDMRG spectral func-
tion. The excellent quantitative agreement between the
Bethe ansatz results calculated for periodic boundary
conditions and our numerical data confirms that the
open chains used in our DDMRG calculations do not
affect the spectral properties significantly.

Because of the separation of spin and charge dynamics,
electron-removal excitations with momentum k are made
of independent spin and charge excitations with momenta
ks and kc � k� ks, respectively. The spinon band be-
tween �kF and kF is related to excitations with the lowest
possible binding energy for kc � 0 and jksj � kF. This
defines the spinon dispersion �s�ks�, which has a width of
about 0:5t and gives the spectral onset for jkj< kF. The
holon-shadow bands going from �kF to 3kF and from
�3kF to kF correspond to excitations with the lowest
possible binding energy for jksj � kF, 0 � jkcj � 4kF,
and kskc < 0. This defines the holon dispersion �c�kc�
with a width of about 2t. It gives the spectral onset for
2kF � jkj � 3kF. The peaks found at low binding energy
for kF � jkj � 2kF correspond to secondary holon bands
made of similar excitations as the holon-shadow bands but
with parallel spin and charge momenta (kskc > 0). They
give the spectral onset for kF � jkj � 2kF. For 3kF <
jkj<� this onset corresponds to a secondary spinon
band with kc � �4kF and jksj< kF.

In Fig. 3, a dashed line shows the dispersion of the
lowest possible excitations made of one spinon and one
holon [i.e., the minimum of �c�kc� � �s�ks� for a given
k � kc � ks]. This lower edge of the spinon-holon con-
tinuum is not related to any feature in the DDMRG
spectral function and one finds spectral weight at lower
energy !. Therefore, the Hubbard model spectral func-
tion cannot be explained with spinon-holon excitations
only. Actually, the lower edge of the spectrum follows the
dispersion of the lowest states made of one spinon and a
single charge excitation called ‘‘4kF’’-singlet excitation in
Ref. [8]. Finally, the very weak peaks found for �2t >
! > �4t and jkj * 2kF seem to be related to the lowest
possible 4kF-singlet charge excitations with ks � �kF
and kcks > 0.

In Ref. [5] it was shown that the dispersion of the
TCNQ related peaks in the ARPES spectrum of TTF-
TCNQ could be mapped onto excitation bands of a one-
dimensional Hubbard model. Our DDMRG calculations
show that the Hubbard model also explains qualitatively
the experimental spectral weight distribution. (A quanti-
tative comparison is not possible because of the strong
background contribution in the ARPES data.) The ARPES
spectrum features labeled (a), (b), and (d) in Refs. [4,5]
perfectly match the (singular) features found in the
Hubbard model spectral function (the spinon, holon,
and shadow bands, respectively). This confirms that the
ARPES spectrum of TTF-TCNQ shows the signature of
spin-charge separation over the scale of the conduc-
tion bandwidth (of the order of 1 eV). In addition, we
256401-3
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FIG. 4. Spectral functions A�k � �=10 � kF=3; !� calcu-
lated with DDMRG for system sizes L � 30 (dotted line),
60 (dashed line), and 90 (solid line). Inset: scaling of the
peak maxima for 0:3 � �=t � 0:06 (30 � L � 150). Solid
lines are fits.
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note that the secondary holon bands (for kF < jkj< 2kF)
correspond to a poorly understood spectral feature
[labeled (c)] which has been attributed to excitations of
the TTF band in Refs. [4,5]. Therefore, we think that this
spectral feature is not related to the TTF band but is
naturally explained by the TCNQ secondary holon bands,
at least in the range kF < jkj< 2kF.

In the Luttinger liquid theory the spectral functions
A�k;!� have singularities j!� ��k�j�� for energies
��k� / jk� kFj given by the spinon and holon linear
dispersions [2,3]. For a system which is invariant under
spin rotation the exponents � are related to the Luttinger
liquid parameter K through �s � �4� K � K�1

 �=4 on
the spinon branch and �c � �6� K � K�1

 �=8 on the
holon branch. The parameter K can be calculated in
the one-dimensional Hubbard model [15], and one finds
K � 0:68 for U � 4:9t and n � 0:6, which corresponds
to exponents �s � 0:46 and �c � 0:48.

In view of the Luttinger liquid theory results it is
natural to ask whether the broadened peaks found in
our DDMRG calculations become singularities of the
spectral function in the thermodynamic limit. To answer
this question and to estimate the exponents � we have
performed a finite-size-scaling analysis [14]. The spectral
function A�k;!� is calculated for several system sizes L
with a broadening scaling as � � 9t=L. Some spectra for
k � �=10 � kF=3 are shown in Fig. 4. The scaling of the
peak maxima Amax with � can then be analyzed (see the
inset of Fig. 4). If Amax diverges as ��� (0<�< 1) for
�! 0, the spectral function has a singularity with ex-
ponent � in the thermodynamic limit. A Landau quasi-
particle corresponds to a Dirac ! function and thus to a
peak diverging as ��1.

Using this scaling analysis we have found that the
spinon, holon, and shadow band peaks become singular-
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ities in the thermodynamic limit. We have not found any
diverging peak with an exponent larger than 0.86, which
confirms the absence of Landau quasiparticles. For k �
�=10 we have found that the spinon, holon, and shadow
band exponents are � � 0:78, 0.44, and 0.56, respec-
tively. For k � 0, we have obtained � � 0:86 for the
spinon band and � � 0:70 for the holon-shadow band.
Therefore, the exponents � are momentum dependent and
for finite jk� kFj they are significantly different from the
Luttinger liquid predictions for jkj ! kF. A recent study
[16] has also shown that these exponents are strongly k
dependent. It is not possible to determine the exponents �
in the asymptotic Luttinger liquid regime with DDMRG
because the finite-size effects are not under control in
that limit.

In summary, we have used a novel approach to compute
the photoemission spectral function of the Hubbard
model on open chains using DDMRG and explained the
ARPES spectrum of the organic conductor TTF-TCNQ.
Our method can easily be extended to other dynamical
response functions and more complicated models.
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[13] D. Sénéchal, D. Perez, and M. Pioro-Ladrière, Phys. Rev.
Lett. 84, 522 (2000).

[14] E. Jeckelmann, Phys. Rev. B 66, 045114 (2002);
E. Jeckelmann, F. Gebhard, and F. H. L. Essler, Phys.
Rev. Lett. 85, 3910 (2000).

[15] H. J. Schulz, Phys. Rev. Lett. 64, 2831 (1990).
[16] J. M. P. Carmelo et al., e-print cond-mat/0307602.
256401-4


