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Revisiting Elastic Interactions between Steps on Vicinal Surfaces: The Buried Dipole Model
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We expose a new analytical method for computing elastic displacements and interactions due to steps
on vicinal surfaces. The model of a “buried dipole” allows us to take into account the specific geometry
of the step while performing anisotropic linear elasticity calculations. The displacements found show a
remarkable agreement with molecular dynamics simulations for Cu and Pt (001) and (111) vicinals. The
interaction energy between steps strongly depends on the dipole direction.
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Vicinal surfaces have been the subject of numerous
fundamental studies concerning, for example, crystal
shape, faceting, or roughening transition [1-6]. They
are today widely studied due to their interest in catalysis
[7] or for growing well-ordered thin films or nanostruc-
tures [8,9], steps acting as a regular array of nucleation
centers. If the miscut gives the mean interstep distance,
the step spacing regularity depends, in particular, on the
step interactions. Conversely, these interactions can be de-
rived from terrace width distribution measurements [2,3].

Since the pioneering prediction of Marchenko and
Parshin (MP) [10], steps have been shown to interact
elastically. In their model, steps on a vicinal surface are
equivalent to lines of point dipoles on the nominal sur-
face. Isotropic calculations lead to a E,/D? repulsive
interaction energy between identical steps separated by
a distance D. Most experiments agree with such a law
[2,3,11]. However, some experimental studies [12,13]
have shown the possibility of attractive interactions, in
full contradiction with MP predictions, but other inter-
actions could not be excluded, for example, electronic or
electrostatic interactions [14,15]. Very recently, it has
been shown that the elastic interaction could be obtained
separately from the other contributions through x-ray
measurements of the atomic relaxations [16]. As a result
of this study the MP model was inadequate for a correct
evaluation of the elastic displacements and the E, coef-
ficient predicted was only approximate [16].

The MP model of the step interactions in the frame of
elastic theory of continuous media is based on three main
approximations: (i) the stepped surface is replaced by a
straight one with periodic lines of force dipoles; (ii) the
two components of the force dipole are taken on the
surface, i.e., the lever arm of the dipole is parallel to
the surface, the torque or stretch nature of the dipole
being due to the force angle ¢ with respect to the lever
arm; (iii) the elastic medium is taken as isotropic. Up to
now, the attempts to calculate step interactions for aniso-
tropic crystals have been limited to a few geometric con-
figurations, for example, (100) line dipoles on the (001)
surface of a cubic crystal [17]. Moreover, it has been
shown [18] that it was also necessary to take into account
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the real geometry of the step, which could not be reduced
to a point dipole on a flat surface.

In this paper, we present anisotropic linear elasticity
calculations for regular vicinal surfaces. Going in the
reciprocal space we show that the elastic displacements
and associated interactions can be obtained, taking into
account both crystalline anisotropy and local step geome-
try. Only the first MP approximation is needed. The
comparison with numerical simulations demonstrates its
validity. The elastic displacements are highly anisotropic
and the directions of both the force and lever arm play a
major role for the interaction. These two conclusions are
missed by the other MP approximations.

We restrict our study to steps whose direction y is
perpendicular to a plane of symmetry. They are modeled
by a periodic distribution of extended force dipoles. The
dipoles consist of a couple of opposite forces applied on
the step edge (S) and step corner (C). The calculations are
done on a plane surface so that S is located at the surface
(z = 0) and C is in the bulk (z = zo > 0) (see Fig. 1). Let
us consider first a harmonic surface force distribution in
the bulk F(x, z) given by

F(x,z) = fexp(iqx)S(z —7zp), Wwith f =(fu 0, f.).

(1)
We can search for displacements #(x, z) given by
ii(x, 2) = Y a; expl(ik;qz) exp(iqx), )
1
where s = “—”” when z < z; and s = “+” when z = z,.

FIG. 1. Force dipole distribution equivalent to the steps. The
full line indicates the surface used for elastic calculations
whereas the dotted line indicates the geometry of the real
surface.
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Writing the bulk mechanical equilibrium leads to a
fourth degree polynomial equation for k, of which the
coefficients are polynoms of the elastic constants.
Therefore, four values of k, conjugated two by two,
satisfy the secular equation. Noting k; and k,, the solu-
tions corresponding to Im(k ) = Im(ky) > 0 and k3 = £j,
k, = k3, we have a; = da; = 0. It is worth noting that for
a general orientation of the surface, the displacements are
attenuated in depth due to the imaginary part of k; and
k», but undergo also a linear drift due to their real part.
Using the equality between stress discontinuities and
external forces at z =0 and z = z; and the continuity
of the displacements at z = z, all the components aj, of
the d; can be found:

a;a/ = Z f'B (Z blmaﬁ exp(_ikquﬂ))’ (3)

B=xz m=1

where the b} . are rational fractions of the elastic con-
stants and of k; but do not depend on ¢g. Details of the
calculations will be given elsewhere[19]. This result also
applies to a force distribution at the surface. We now
consider the force dipole distribution shown in Fig. 1.
To avoid infinite displacements and energy, the dipole
distribution Ij"(x, z) must be smoothed by a cutoff of
length a,.. The choice of a Lorentzian broadening allows
the harmonics resummation [20]. We take

F(x,7) = — Z exp(inGx — |n|Ga,)8(2)

n*—oo

—explinG(x — xo) — [n|Ga ]6(z — z9), (4)
where G = 27r/D. The displacements due to the n = 0
dipole layer are easily obtained and the total displace-
ments write

f 4 4
uy(x,z) = Z;ﬁ[Re(Z Z Bimap log{1 — exp[G(ik;z — ik,zyp + ix — —a.)l}
B =1m=1
2 4
= > > biuaplogfl — exp[Glikiz + ix - C>]})+caﬁ<zO - z>} for z < z,
=1 m=1
f 2 4 1 — exp[G(ik;z — ik, zy + ix — ixg — a.)]
_ B N plG(ik;z — ik,,zo + ix — ixy — a,
,2) = » =R b 1 R f =3z 5
q(x, 2) Z T e(; mZI imap 108 1 — exp[G(ikiz + ix — a.)] ) Of 20 =12 )

B

where ¢, are rational fractions of the elastic constants. The elastic energy writes E =

G
H, ;=—c
afB p apBl0

1 — exp(—2Ga,)

- fofgH,g With
apratpilap

1 - exp[G(ik,zO - ika() 2a )]

+ —R
ez Z( map ! 8= exp[Gik;zg + ixy — 2a.)]

=1m=1

L

OB explG(—ik, 2o — ixy — 2a,)] ) ©)

From parity arguments, it is easy to show that the terms of odd order greater than 2 are zero in the series expansion of
H, B(G)' Moreover it can be shown [19] that the first order term is zero leading to

E 1
E=E,+ E (D) =E Di + 0( )
. _ 2a,. + iZO(k - kl) 2a )
th £, = b 1 < m b .1 < ,
with Zo e( map 80 " ilxo + zokn) B 820 — i(xy + z0k)
and E2 = 12 Imag + blmaﬁ) + ZXOZO(bEna,Bk + b?r—nozﬁkl) - 4iacZOkl(bl_ma,B - b;:naﬁ)
+ Z(z)[bl_maB(ka — k))k; + bfmaﬁk2]} (7)

in which the summation on /, m, &, and 8 is implicit. The |
a.zo term in E, must be omitted since it is related to the
particular choice of a Lorentzian broadening for the force
distribution and has no physical meaning.

Figure 2 shows the comparison of E, obtained from
Eq. (7) for A-type steps on a Cu(111) vicinal with wide
terraces, taking into account the exact geometry of the
step (““buried dipole) or using a dipole with lever arm
parallel to the surface (zo = 0) (‘“‘surface dipole”) with
the same results obtained using isotropic elastic constants
for Cu. Both for anisotropic and isotropic cases, the major
result is the strong dependence of the elastic inter-
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action energy with the force direction ¢ for a buried
dipole: The maximum of repulsive interaction energy is
obtained for a dipole close to a pure torque (¢ = 90°),
whereas for a stretch dipole (¢ = 0°), E, practically
vanishes. This general behavior is also observed for a
(001) orientation. Even more, full explorations of face
orientations show that in special cases, for example, on
Cu(119) or Au(332), the interactions can become slightly
attractive for stretch dipoles. However higher order terms
in the series expansion of E have to be considered when
E, becomes negligible. For a surface dipole, the angular
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FIG. 2. Angular dependence of the interaction energy be-
tween steps on Cu(n — 1,n — 1,n + 1) with n — oo, Full and
dashed lines: buried dipole (zg = ay/~/3, xo = ay/~/6). Dotted
and dash-dotted lines: surface dipole (zo = 0, xo = ag//2).
Full and dotted lines: anisotropic calculations. Dashed and
dash-dotted lines: isotropic calculations. a, is the lattice con-
stant and the values are normalized to the MP value of the
interaction.

dependence of the interaction energy is quite weak
and disappears for the isotropic case as predicted by
Marchenko’s formula. Therefore, the surface dipole
model misses the strong dependence of the interaction
energy with the force direction which is accounted for in
the buried dipole model.

To confirm our results and to test the validity of our
model, we have compared the analytical calculations
with quenched molecular dynamics (MD) simulations.
We restrict our presentation to Cu and Pt vicinals of
(001) and (111) surfaces. For MD, we use a semiempirical
many-body potential well adapted for transition and
noble metals [21]. The parameters of the potential, fitted
on the elastic constants and cohesive energy, are given in
[22,23]. The simulations are performed on slabs of thick-
ness e in the z direction, with periodic boundary con-
ditions along x and y. The specific elastic displacements
#MP due to the steps are obtained by subtracting to the
relaxations the mean contribution of the terraces using
the same procedure as in [16]. #MP are compared to the
elastic displacements #F'®" given by Eq. (5), taking f as a
free parameter. In the fitting procedure, we take into
account all atoms except step edge and corner atoms.
We are much more sensitive to the torque component py
of the dipole than to the stretch component pg for which
the displacements are smaller in the bulk.

Figure 3 shows the comparison for Cu(15 15 16). The
agreement is remarkable, in particular, on the linear drift
and attenuation coefficients, given, respectively, by
Re(k,,) and Im(k,,). Far from the surface, # is given by
the first harmonic of the k, mode. The displacements are
then about 3 times higher along z than along x. Such
anisotropy cannot be reproduced either with isotropic
calculations or with surface dipoles. Both buried dipoles
and anisotropic crystallinity are thus necessary for a
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FIG. 3. Elastic displacements on Cu(15 15 16): comparison
between MD and elastic results with pg = 0.22 nN and p; =
0.19 nN. Circles: uMP; crosses: uMP; full line: uf'®t; dotted
line: uf'®'. The inset shows the displacements deeper in the
bulk. Note that the abscissas are obtained by following the
atomic positions along the [101] axis of the (111) plane.

correct description of #. The inset of Fig. 3 corresponds
to a depth at which the harmonics of intermediate order
are still visible. The excellent fit of the MD results by the
analytical expression of Eq. (5) in this region clearly
indicates that a force dipole applied on the step edge
and step corner fully accounts for the force distribution
associated with the steps in the case of Cu(111) vicinals.
This also justifies the choice of performing the elastic
calculations on a planar surface. The minor differences
appearing on Fig. 3 for z = 0 are probably due to the
modification of the elastic constants near the surface in
MD calculations, due to the many-body nature of the
potential used. The agreement is also excellent for
Cu(001) and Pt(001) vicinals, but less good for Pt(111)
vicinals especially near the surface (see Fig. 4). This
could be due to the fact that the force distribution is in
that case more complex than a dipole.

In the MP model [10], pr is equal to the product of the
surface stress 7 of the nominal surface by the step height
Zo. In the MD simulations, we have computed 7 for the
different surfaces studied. The comparison between 7z,
and pr is given in Table L. p7 is very close to 7z,. This
indicates that the value of surface stress of a nominal

-0.02f]

-0.04 4

FIG. 4. Elastic displacements on Pt(15 15 16): comparison
between MD and elastic results with pg =0 and p; =
0.61 nN. Same legend as in Fig. 3.
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TABLE L. Values, in the limit D — oo, of the torque dipole
density pz, of 779, and of E,, obtained from Eq. (7) or from
Eq. (8). The precision is 10% on pr and 20% on E,.

E, (eVA)
Surface pr (nN) 779 (nN) Elastic MD
Cu(001) 0.25 0.237 0.056 0.076
Cu(111) 0.19 0.185 0.020 0.025
Pt(001) 0.39 0.407 0.17 0.17
Pt(111) 0.56 0.535 0.13 0.27

surface can be obtained through the determination of ps
on a vicinal surface.

The interaction energy EL®' is obtained through
Eq. (7), using the value of p which gives the best fit to
the displacements #MP. Since E, = 0 for a stretch dipole,
it is mainly given by py (cf. Fig. 2). For all vicinals
studied, the higher order terms in Eq. (7) were always
negligible. However, it must be noticed that E, varies
implicitly with D since crystalline orientation and p
vary with D. Concurrently, the step interaction energy
E;n(D) can be obtained directly from the dependence of
the surface energy y given by MD results with the miscut
0:

Y(0) = y0)cos(0) + SIEP + EXP(D)] )

The comparison between the two methods is given in
Fig. 5. The agreement is excellent for (001) vicinals. For
Cu(111) vicinals, MD results exhibit a softening of the
interaction for short interstep distances which is not
recovered with Eq. (7). Nevertheless, for these short
interstep distances, a linear elasticity approach is ques-
tionable. For Pt(111) vicinals, the agreement is less good,
with EF®t /D? being approximately 40% less than EMP.

We have previously noticed that, in this case, a force

distribution reduced to a dipole seems insufficient. EMP

is well fitted by EXP/D? + EMP/D3. The values of EYP
are compared in Table I to ES®(D — o0). The greater
discrepancy between the two values is of course obtained
for Pt(111). For Cu, E, is 5 to 10 times higher than the
values found by statistical analysis of STM images [2,3].
This is partly due to the neglecting of the negative E;
term in the STM studies. This could also be due to the
differences between the interaction of straight steps at 0 K
discussed here and the interaction of meandering steps
above the roughening transition temperature, for which a
1D model is questionable.

To conclude, comparisons with MD calculations dem-
onstrate the validity of the buried dipole model for vici-
nals of Cu(100), Pt(100), and Cu(111). Our calculation
clearly shows that in order to reproduce the elastic inter-
action energy dependence with dipole direction, the en-
vironment difference between the step edge and the step
corner must be considered. We show that analytical results
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FIG. 5. Comparison of the step interaction energy derived

from MD and E,/D? obtained from Eq. (7). Symbols: MD
results; lines: elastic results.

in the frame of anisotropic linear elasticity can be easily
obtained by Fourier transform. The method could be
applied to a wide variety of phenomena governed by the
distribution of elastic forces near the surface such as self-

assembly or self-ordering [20].
The authors thank L. Barbier and D. Calecki for fruit-
ful discussions.
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