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Evidence for Power-Law Dominated Noise in Vacuum Deposited CaF2
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We have studied the surface roughness of CaF2 vacuum deposited on glass using atomic force
microscopy for film coverages spanning an order of magnitude. We find the roughness exponent � �
0:88� 0:03, the growth exponent � � 0:75� 0:03, and the dynamic exponent z � �=� � 1:17� 0:06.
Multifractality is also present, along with power-law behavior in the nearest neighbor height difference
probability distribution. The results indicate noise dominated by a power-law distribution with exponent
�� 1 � 4:6.
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Over the past several decades considerable work has
been done on the kinetic roughening of surfaces. The
systems studied are far from equilibrium and very often
the growing interface is tortuous and well described using
fractal concepts. This general field of study encompasses a
diverse range of phenomena, such as thin film growth,
fluid flow through porous media, the propagation of burn-
ing fronts, and the growth of bacterial colonies. Of par-
ticular interest are the critical exponents that characterize
the growing rough interface [1–3].

The roughness of an interface originates through small
random perturbations occurring during the growth pro-
cess, or, in other words, noise. In many instances this
noise was assumed to be Gaussian and uncorrelated,
which led to the establishment of universality classes,
each characterized by a set of critical exponents. Later
work concluded that if the noise follows a power-law
distribution the critical exponents are different, resulting
in nonuniversal behavior [4,5]. This has been verified in
1� 1 dimensions using two phase fluid flow [6,7] and the
propagation of slow burning fronts [8]. In this Letter, we
report on experiments using CaF2 vacuum deposited on
glass that exhibit evidence of power-law distributed noise
in 2� 1 dimensions.

Much of the current interest in this field has been
stimulated by the introduction of the dynamic scaling
description [9] and the stochastic growth equation due to
Kardar, Parisi, and Zhang (KPZ) [10]. Starting from a flat
surface of size L at time t, Family and Vicseck [9] con-
jectured that the interface width w�L; t� has the scaling
form w�L; t� � L�f�t=Lz�, where w�L; t� is defined as
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The brackets denote an average over different samples,
and h� ~rr; t� is the height of the interface at position ~rr. The
mean height of the interface is given by hh�L; t�. For
surfaces that saturate for t� Lz, the scaling function
behaves as f�x� ! constant when x! 1; otherwise,
f�x� � x�. For early times, the width is related to time
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w�L; t� � t� 1 � t� Lz (2)

and when t� Lz, w�L; t� � L�. The exponents are not
independent, rather they are related through � � �=z.
The set of�,�, and z constitute the critical exponents and
are designated the roughness exponent, the growth ex-
ponent, and the dynamic exponent, respectively [1].

The KPZ equation [10]
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is a nonlinear equation proposed to describe interface
growth in the presence of noise. Here � is an effective
surface tension and � describes the strength of lateral
growth. The noise is introduced through �, which is
usually assumed to be Gaussian with h��~rr; t�i � 0
and uncorrelated satisfying h�� ~rr; t���~rr 0; t0�i � ��~rr	
~rr 0���t	 t0�. The critical exponents of Eq. (3) can be
found analytically in 1� 1 dimensions (� � 1=2; � �
1=3) and estimated numerically in 2� 1 dimensions
(� � 0:38, � � 0:24) [1]. An additional restriction due
to Galilean invariance is placed on the exponents in all
dimensions resulting from Eq. (3) [11–13],
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�
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Many experiments aimed at measuring the scaling ex-
ponents of a system found � > 1=2. This led to the
proposal of Zhang [4,5], who realized that a system
dominated by noise that follows a power-law distribution,
rather than a Gaussian, results in different exponents. In a
D� 1 dimensional system with an uncorrelated power-
law probability distribution of the form

P��� �
�
�	���1� for� > 1
0 otherwise

(5)

the scaling exponents of the KPZ equation were estimated
to be [5,14]
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: (7)
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FIG. 1 (color online). C2 versus ‘ for several of the 2 �m�
2 �m sets of images.

FIG. 2. � versus d for all surfaces. The solid line indicates the
average value, �� � 0:88� 0:03, excluding the two anoma-
lously low values.
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Later work provided theoretical evidence that these equa-
tions were in fact exact [15]. These equations are believed
to be valid for D� 1<�<�c, where there is a cross-
over to Gaussian-type behavior at �c. In 2� 1 dimen-
sions, it appears that only one numerical simulation has
confirmed the result for � in Eq. (7) [16], and no experi-
mental evidence has been put forth for the existence of
power-law distributed noise.

The samples we study consist of CaF2 vapor deposited
at 0:2 nm= sec onto glass substrates. A sequence of
samples of film coverages, d, were prepared and are
identified by 30 � d � 520 nm, constituting two sets of
samples. The value of the film coverage, d, used to iden-
tify each sample was determined from the deposition
observed on a quartz crystal microbalance, measured
simultaneously with the deposition on each glass sub-
strate. The coverage, d, is reported here as a film thick-
ness presuming the bulk density of CaF2. Profilometer
measurements of the actual thickness of the CaF2 films,
dp, were made on each of the studied samples and confirm
that the deposited CaF2 is porous, with a constant poros-
ity� � 0:462� 0:006, independent of coverage. The two
quantities d and dp are related by dp � d=�1	��. All
depositions were done at a constant rate, hence t� d. Set I
samples were fabricated solely for surface analysis, while
set II samples were used for low temperature investiga-
tions [17], as well as surface analysis. The two sets over-
lapped in thickness range, providing multiple samples for
certain thicknesses. The set II samples had narrow Ag and
Al bands deposited on the glass surface prior to the
deposition of CaF2. The thin films of metal constituted
a very small percentage of the surface area of the sample.
All samples were stored under vacuum after fabrication.

Images (512 pixels � 512 pixels) of the surfaces were
obtained using tapping mode atomic force microscopy
(AFM) under ambient conditions. Ensemble averages
were taken over two images of each surface. Images
were captured at different locations, both of which were
far away from the CaF2 film edges and the metal deposits
in the case of the samples in set II. The size of the images
taken using AFM varied due to the change in the size of
the surface structures as d changed and also were varied
to facilitate comparison. The scan size of the set II
samples was 2 �m� 2 �m and the scan size for the
set I samples was 2 �m� 2 �m for d � 90 nm and
1 �m� 1 �m for d � 125 nm. The full experimental
details will be presented elsewhere [18].

As is customary, we define the qth order moment of the
surface as[1]

Cq�‘� �
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where the inner brackets denote an ensemble average and
the outer brackets denote a radial average. ~‘‘ is a vector
that determines the distance between two points on the
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surface. For ‘ less than the correlation length, the mo-
ments scale as Cq � ‘qHq , whereHq is a function of q and
H2 � � and C2�1� � t2� as ‘! 1 [1]. If Hq is constant,
then the surface is self-affine and Hq � �; if Hq changes
with q, then the surface is multifractal. Numerical work
[19] has suggested that a system dominated by power-law
noise leads to multifractality.

Figure 1 shows values of C2�‘� versus ‘ for a represen-
tative set of samples. 2� is defined to be the slope of a
linear fit in the region of small ‘. All of the values of �
obtained from these experiments are shown in Fig. 2. � is
relatively constant, except for the values from two
samples (set II, d � 50 nm and 520 nm) and the average
256102-2



FIG. 3. Plot of w�L; t� versus d (i.e., time) on a log-log scale
for all sets of images. The inset shows C2�1� versus d. The solid
line in both plots is a functional fit to a power law resulting in
the identical result � � 0:75� 0:03.

FIG. 4 (color online). Hq versus q for all samples. The data
are shown in two panels for clarity. The numbers in the legend
refer to the thickness of the film, d, in nanometers. The label II
refers to set II, and those without this designation are from set I.
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of all values of �, excluding the two anomalous points, as
shown by the solid line in the figure is �� � 0:88� 0:03.
The interface width of each sample, calculated using
Eq. (1), is shown in Fig. 3, where the solid line is a linear
fit to the data whose slope gives � � 0:75� 0:03 [See
Eq. (2)]. The inset of Fig. 3 shows C2�1� versus d, where
C2�1� is taken from the saturation values of C2�‘�. The
line is a fit to the data yielding an identical value of
� � 0:75� 0:03. Evidence for multifractal behavior is
clearly present in Fig. 4 from the fact that for nearly all
the data sets there is a decrease in Hq in the region q �
2:5–5:0, after which Hq approaches a constant value
for each set of images. Again, the set II sample with
d � 50 nm is atypical, as is the set II sample with
d � 520 nm but to a lesser extent.

If our system exhibits power-law noise, then solving
Eq. (7) with our measured values of � and � should
produce a consistent value for �. Using �� � 0:88�
0:03 yields � � 3:5� 0:2, while using � � 0:75� 0:03
yields � � 3:7� 0:1; both values of � are in statistical
agreement. Barabási et al. [19] have argued that noise that
follows a power-law distribution leads to a phase transi-
tion in the Hq spectrum at q � �. The transition shown
[19] in Hq is a downward step starting at q � �, similar
to those seen in Fig. 4, although our steps are smaller and
broader. We can use the downward turn in our Hq spectra
to estimate �: The transition points are not well defined;
accordingly, we estimate � � 2:5–5:0, which is in agree-
ment with the above values. We also point out that our
results satisfy Eq. (4), with �� �=� � 2:05� 0:07.

Lam and Sander [20] have shown that for systems
dominated by power-law noise the probability distribu-
tion for nearest neighbor height differences, �, is given by
256102-3
P��� � �	� for large �. We define � for our images as

� �
jh� ~rr; t� 	 h� ~rr� ~rrnn; t�j

j ~rrnnj
; (9)

where ~rrnn is the vector pointing from ~rr to the nearest
neighbor. In our case, j~rrnnj � 1 pixel. Figure 5 shows
log�P���
 (ensemble averaged) for several typical sub-
strates. For large d there are two regions of linearity.
The linear region nearest to log��
 � 0 is most prominent
for large values of d. This region shrinks as d gets smaller
and is absent for d < 175 nm. The values of the slope in
this region are slightly scattered within the range 2:5–5,
which encompasses the previously determined values of
�. The second region of linearity persists to the smallest
d, with a slope ranging from 	10 to 	5 for d � 30 nm to
d � 520 nm. This region is most likely due to an experi-
mental upper limit in the height fluctuations.

The acceptance of the concept of power-law distributed
noise has been hindered due to the lack of physical
justification for its existence [2,4], although it has been
shown that power-law noise can arise in models having
quenched disorder [21], such as that found in the two
phase fluid experiments [6,7]. Collectively, our results
suggest the existence of power-law distributed noise,
which dominates our system. We are not able to define
and measure a noise spectrum directly as was done in
several 1� 1 dimensional experiments [6,8]. This is
256102-3



FIG. 5. Log�P���
 versus log��
 for d � 30, 175, 300, and
520 nm, corresponding to the inverted triangles, squares,
triangles, and circles, respectively. There are two visible linear
regions for d � 175 nm and only one for d < 175 nm. The solid
lines show a linear fit to the each linear region for d � 520 nm.
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because we do not measure a single interface as it grows,
but rather grow an interface for a time, t, and then repeat
the process for a different substrate and a different t. The
result is our sets of samples, which are many realizations
of the noise spectrum. The physical source of the noise in
our experiments is not obvious. The interfaces do not
evolve in the presence of quenched disorder; therefore
the mechanism of the noise is different than in the two
phase fluid experiments.

Theoretical work using a Huygens principle construc-
tion to model the columnar growth of an amorphous film
has indicated that the initial conditions of a sputter de-
posited interface can noticeably alter the morphology of
the growing surface [22]. An AFM image of a glass
substrate, similar to those used here, reveals very small
surface structure with w�L; 0� � 0:4 nm. We did, how-
ever, see two regions of power-law scaling in Cq for
glass with a crossover ranging from ‘� � 20 nm in C1

to ‘� � 30 nm for C20, with � � 0:51� 0:03 and � �
0:19� 0:03 for ‘ < ‘� and ‘ > ‘�, respectively. The Hq
spectra of both linear regions exhibited a gentle step near
q � �, as did those in Fig. 4. The step in Hq for ‘ > ‘�
was a decreasing function of q and its magnitude �0:1,
while the step for ‘ < ‘� was an increasing function of q
with a larger step size of �0:35. The steps occur at a q
which coincides with our earlier determined values of �,
but the roughness exponents are considerably different.
The different values of � suggest that roughness of the
CaF2 is not a direct extension of the glass roughness.
Therefore, it is not clear to what extent, if any, the initial
condition of the glass played in the growth of the surfaces.
256102-4
In summary, we have provided evidence for a power-
law distribution of noise in vacuum deposited CaF2 on
glass. Since we were unable to measure the noise spec-
trum directly, we cannot check for the existence of
spatiotemporal correlations, which may result in com-
paratively high exponents such as ours. Regardless, the
evidence presented here allows the conclusion that our
system is well described by the KPZ equation with noise
dominated by a power-law noise distribution.
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