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Standing-Wave Oscillations in Binary Mixture Convection: From the Onset via Symmetry
Breaking to Period Doubling into Chaos
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Oscillatory solution branches of the hydrodynamic field equations describing convection in the form
of a standing wave (SW) in binary fluid mixtures heated from below are determined completely for
several negative Soret coefficients  . Galerkin as well as finite-difference simulations were used. They
were augmented by simple control methods to obtain also unstable SW states. For sufficiently negative
 , unstable SWs bifurcate subcritically out of the quiescent conductive state. They become stable via a
saddle-node bifurcation when lateral phase pinning is exerted. Eventually their invariance under
timeshift by half a period combined with reflection at midheight of the fluid layer gets broken.
Thereafter, they terminate by undergoing a period-doubling cascade into chaos.
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studied experimentally and theoretically in detail [1,5– tial averaging. In a perfectly mixed fluid, M vanishes
Convection in one-component fluids such as pure water
occurs in Rayleigh-Bénard setups of narrow channels
heated from below in the form of stationary rolls.
However, adding, for instance, 5% of ethanol to the water,
the spatiotemporal behavior of the possible convective
structures becomes much richer [1]. The reason is that
concentration variations which are generated via the Soret
effect by externally imposed and by internal temperature
gradients influence the buoyancy, i.e., the driving force
for convective flow. The latter in turn mixes by advec-
tively redistributing concentration. This nonlinear advec-
tion gets in developed convective flow typically much
larger than the smoothening by linear diffusion—Péclet
numbers measuring the strength of advective concentra-
tion transport relative to diffusion are easily of the order
of a thousand. Thus, the concentration balance is strongly
nonlinear giving rise to strong variations of the concen-
tration field and to boundary layer behavior as in Fig. 1. In
contrast to that, momentum and heat balances remain
weakly nonlinear close to onset as in pure fluids implying
only smooth and basically harmonic variations of veloc-
ity and temperature fields as of the critical modes,
cf. Fig. 1. Hence, the feedback interplay between (i) the
Soret generated concentration variations, (ii) the resulting
modified buoyancy, and (iii) the strongly nonlinear ad-
vective transport and mixing causes binary mixture con-
vection to be rather complex with respect to its
spatiotemporal properties and its bifurcation behavior.

Take, for example, the case of negative Soret coupling,
 < 0, between deviations �T and �C of temperature and
concentration, respectively, from their means [4]. Then
the above described feedback interplay generates oscil-
lations. They show up in transient growth of convection
[3] at supercritical heating, in relaxed nonlinear traveling
wave (TW) and standing wave (SW) solutions that branch
subcritically out of the conductive state via a common
Hopf bifurcation, and in spatially localized traveling
wave (LTW) states. TW and LTW convection has been
0031-9007=04=92(25)=254501(4)$22.50 
13]. But little is known about nonlinear SW states beyond
a weakly nonlinear analysis [14] that is restricted to
the immediate vicinity of the oscillatory threshold. It
showed that SWs are unstable there, typically bifurcating
backwards.

Here we determine for the first time structure, dynam-
ics, and bifurcation behavior of SWs for several  . We
stabilize the unstable SWs by control methods which can
similarly also be applied in experiments. We found that
they undergo a period-doubling cascade into chaos after a
symmetry has been broken that relates upflow and down-
flow to each other.

Calculations were done for mixtures such as ethanol
water for Lewis number L � 0:01 and Prandtl number
� � 10. The field equations were solved in a vertical
cross section through the convection rolls perpendicular
to their axes. A multimode Galerkin method as well as a
finite-difference method were used showing agreement
with each other. Horizontal boundaries at top and bottom,
z � �1=2, were no slip, perfectly heat conducting, and
impermeable. Laterally, we impose periodic boundary
conditions with wave number k � �. In addition, we
suppress phase propagation. We stabilize the SW states
by exerting control via the field amplitudes (or the heat
current injected into the fluid) and the Rayleigh number R
in response to the instantaneous frequency and its tem-
poral derivative, respectively [15]. In this way we trace
out the SWsolution branch all the way from close to onset
with large frequency to slowly oscillating SWs that even-
tually period double into chaos. The procedure starts
from a supercritically growing transient SW with subse-
quent reduction of the heating below threshold.

We use r � R=R0
c to measure the thermal driving. R0

c �
1707:762 is the critical Rayleigh number for onset of
convection in a pure fluid. The flow induced mixing is
measured by the mixing number M�t� that is defined
in terms of the mean square concentration deviation,
M2 � h��C�2i=h��Ccond�

2i. Here, the brackets denote spa-
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FIG. 1 (color). Snapshots of SW convection for r � 1:15,  �
	0:25 during half of its oscillation period � � 2�=! � 1:4.
The concentration distribution in the vertical cross section
through the layer is color coded with blue and red denoting
high and low concentration, respectively. Lateral wave profiles
of vertical velocity w, temperature �T, and concentration �C at
midheight, z � 0, are shown by colored lines: w, blue; 40�T=R,
red; and 80�C=R, green, respectively. At the snapshot times
t � 0 (a), 0:265� (b), and �=2 (c) �C�x � 0; z � 0; t� has a
minimum, a zero crossing, and a maximum, respectively. This
SW shows the MTS explained in the text.

P H Y S I C A L R E V I E W L E T T E R S week ending
25 JUNE 2004VOLUME 92, NUMBER 25
while M � 1 in the conductive state (denoted by the
subscript cond) with its large Soret-induced vertical con-
centration gradient.

In Fig. 1, we show snapshots of SW convection in
order to display characteristic symmetry and structural
properties. SWs are laterally mirror symmetric around
positions of maximal upflow and downflow; e.g., x � 0
and the node locations of the fields are fixed in time.
Furthermore, all fields have at every instant definite
parity under the mirror-glide operation �x; z� !
�x� �=2;	z� of vertical reflection at midheight, z � 0,
combined with lateral translation by half a wavelength.
254501-2
We did not observe SWs without this symmetry—pertur-
bations breaking it that we introduced for test purposes
always decayed rapidly to zero. Finally, the fields of Fig. 1
have a definite mirror-timeshift symmetry (MTS); e.g.,
f�x; z; t� � 	f�x;	z; t� �=2� for f � �C; �T, and the
vertical velocity field w with � � 2�=! being the SW
oscillation period. At midheight, the condition f�t� �
	f�t� �=2� implies, in particular, that positive and
negative field extrema of an oscillation cycle have equal
magnitudes. SWs with smaller frequency break this sym-
metry which is a prerequisite for period doubling [16].

Since the concentration balance is dominated by
nonlinear advection, the distribution of �C (color coded
plots in Fig. 1) shows plumelike structures and narrow
boundary layers. Consequently, the field profiles of �C
which are shown in Fig. 1 at z � 0 are anharmonic. Also,
the temporal oscillation of �C at a fixed location is
anharmonic. On the other hand, temporal and spatial
variations of w and �T are much smoother and almost
harmonic. The oscillation of w is temporally delayed
relative to that of �C: The latter being advected almost
passively by the former changes the buoyancy driving
force for w. At midheight, this phase shift increases
from about 0:52� at onset to about 0:73� before the
MTS breaks.

Figure 2 shows how the bifurcation behavior of SWs
changes with Soret coupling strength 	0:4 
  

	0:03. The solution branch for stationary overturning
convection (SOC), which has the same spatial symme-
tries as SWs, is included for comparison only for  �
	0:03. The heating range in which SWs exist increases
when  becomes more negative since the oscillatory
bifurcation threshold rosc is shifted stronger to higher r
than the SW saddle node at rSWs which marks the lower
end of the r interval containing SWs. All these SWs
bifurcate subcritically out of the conductive state as un-
stable solutions. They become stable via saddle-node
bifurcations. However, when the phase-pinning condition
is lifted completely then SWs decay by developing TW
transients since any spatial phase difference between �C
and w causes the extrema of the latter to be ‘‘pulled’’
towards the solutally shifted buoyancy extrema.
Depending on r, these transients either end in a nonlinear
TW or SOC or the conductive state.

Moving along an SW branch, the maximal vertical
upflow velocity wmax [Fig. 2(a)] does not increase mono-
tonically as in TWs and SOCs but rather has a maximum
somewhat below the respective SOC value before it drops
again. On the other hand, ! and M decrease monotoni-
cally starting with the Hopf frequency !H and M � 1,
respectively, at onset. M and ! are related to each other
almost linearly as in TWs [2].

The blowup of the lower part of Fig. 2(b) in Fig. 2(c)
shows how stability and shape of the solution branches
change with  . While the SWat  � 	0:03 has only one
saddle node, the curvature of the branches changes with
decreasing  such that two additional saddle nodes arise
254501-2



FIG. 3. Details of the bifurcation behavior for  � 	0:03
(leftmost curves in Fig. 2). (a) Magnitude jwextrj of the extrema
in the vertical flow. (b) Frequency !. For the sake of complete-
ness, we include also the TW solution for laterally periodic
boundary conditions allowing free phase propagation. SW and
TW bifurcate subcritically at rosc � 1:0418 with Hopf fre-
quency !H � 3:426. The TW branch ends by merging with
zero frequency with the SOC solution branch. The SW solution
becomes stable (solid lines) at the saddle-node position rSWs �
1:0373. At r � 1:048 31, the MTS is broken and the solid SW
line in (a) splits into two when the magnitudes of the vertical
flow extrema occurring during one oscillation cycle become
different [see, e.g., Fig. 4(b) where the downflow at x � 0 � z
is more intense than the upflow]. This MTS-broken SWstarts to
undergo at r � 1:048 83 (marked by arrows) a period-doubling
route to chaos that is shown in more detail in the inset of (a).
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FIG. 2. Bifurcation properties of SWs for  � 	0:03, 	0:05,
	0:1, 	0:15, 	0:2, 	0:25, 	0:3, 	0:35, and 	0:4 (from left to
right): (a) Maximal vertical velocity wmax. (b) Frequency !.
(d) Time average of the mixing number M. The inset (c) shows
a blowup of the lower part of (b), however, with shifted
solution branches to better display their structural evolution
with  . Full (dashed) lines in (c) identify stable (unstable) SWs.
Unstable SWs bifurcate subcritically out of the quiescent con-
ductive state [lower ends of the curves in (a); upper ends in (b)
and (c)] and undergo stability changes via saddle-node bifur-
cations. The SOC solution branch is shown for the sake of
clarity only for  � 	0:03. SOC curves for the other  are
shifted slightly to the right.
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(for  � 	0:25;	0:3;	0:35) with associated stability
changes. For  � 	0:4, we have only one saddle node
again.

The bifurcation behavior of the leftmost curves of Fig. 2
is displayed in more detail in Fig. 3. For the sake of
completeness, the TW solution is shown as well.
However, when phase propagation is suppressed as in
our case, then the TW does not exist and the upper SOC
solution branch [full line in Fig. 3(a)] is stable down to its
saddle node.

Also the SW becomes stable via a saddle-node bifur-
cation. With increasing r, the flow amplitude of the stable
SW (full lines) slightly decreases. Then the MTS breaks
and the solution branch splits into two. Thereafter the
downflow (upflow) extrema occurring in the SW oscilla-
tions, say, at x � 0 ( � �=2), are more intense than the
upflow (downflow) extrema. Consequently, the time aver-
aged fields have now a net SOC-like structure with non-
zero mean downflow (upflow), say, at x � 0 ( � �=2).

Figure 4 shows the local dynamics of w and �C at x �
0 � z and the global mixing number M before (left
254501-3
column) and after (right column) MTS breaking. By
definition, M oscillates with twice the SW frequency as
long as MTS holds. Note that, in particular, �C displays
the characteristics of a relaxational oscillator. In the
MTS-broken SW of Fig. 4, the extrema of upflow and
downflow at x � 0 differ. Also the upflow and downflow
times between the respective zero crossings of w differ.

In Fig. 5, we show how MTS breaking and period
doubling changes the SW phase dynamics using w, _ww,
and M as characteristic local and global quantities, re-
spectively. The particular MTS-broken SWorbits of Fig. 5
move closer to the SOC fixed point with downflow at x �
0. Here it would be interesting to see whether and how the
heteroclinic orbits connecting the two unstable symmetry
degenerate SOC fixed points organize and restrain the
dynamics of the SWs that periodically switch between
upflow and downflow.

For the  range considered here, we found that slightly
after the MTS breaking a period-doubling scenario into
chaos starts that is compatible within our numerical
resolution with the Feigenbaum constant. For stronger
254501-3
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FIG. 4. Effect of MTS breaking on temporal oscillation pro-
files. Right (left) column shows a period-1 SW for  � 	0:03
at r � 1:0488 (1.0483) where the MTS is (not yet) broken. Here
w and �C are evaluated at midheight between two rolls, x �
0 � z. The mixing number M oscillates with twice the SW
frequency as long as the MTS holds (c).
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Soret coupling, e.g.,  � 	0:25, we could resolve also a r
window with period-3 SW states and subsequent period
doubling. However, we did not observe SWs beyond the
chaotic window(s) seen, e.g., in the inset of Fig. 3(a).
After increasing the heating beyond this threshold, the
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FIG. 5. MTS breaking and period doubling in the phase space
dynamics of SWs. Shown are the mixing number M and _ww
versus the vertical velocity w at x � 0 � z. In (a)–(d) the dash-
dotted (full) lines refer to the period-1 SW in the right (left)
column of Fig. 4 for which the MTS is (not yet) broken. Period
doubling is displayed in (d)–(f). Upwards and downwards
pointing triangles indicate symmetry degenerate unstable
SOC fixed points (dashed SOC branches in Figs. 2 and 3)
with upflow or downflow, respectively, at x � 0.
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SWs developed transients into a stable SOC state with
large convection amplitude [full line in Fig. 3(a)].

In summary, we have determined SW states in mix-
tures for several Soret coupling strengths. Close to onset
of convection, the subcritical solutions are unstable.
Under phase-pinning conditions, they become stable via
saddle-node bifurcations. After the occurrence of a MTS
breaking, they undergo a period-doubling cascade into
chaos thereby terminating.
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