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Coincidence Bell Inequality for Three Three-Dimensional Systems
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We construct a Bell inequality for coincidence probabilities on a three three-dimensional (qutrit)
system. We show that this inequality is violated when each observer measures two noncommuting
observables, defined by the so-called unbiased six-port beam splitter, on a maximally entangled state of
two qutrits. The strength of the violation agrees with the numerical results presented by Kaszlikowski
et al. , quant-ph/0202019. It is proven that the inequality defines facets of the polytope of local variable
models.
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given in [8,9]. Moreover, this inequality was shown to be tion of any statistical quantity that can be observed in
The nonexistence of local-realistic (LR) models that
could reproduce the correlations for the experimental
outcomes observed in composite quantum systems was
shown by Bell in 1964 [1] through the violations of
certain constraints, known as Bell inequalities. The
Bell inequalities and the Clauser-Horne-Shimony-Holt
(CHSH) inequality [2], the latter being cast into a form
more amenable for experimental verification, were for-
mulated for the simplest composite quantum system,
namely, a system of two two-dimensional particles (or
two qubits). Since then, Bell arguments have been gener-
alized to more complicated situations, either for a larger
number of particles or for two particles of dimension
greater than two.

For three two-dimensional particles, Greenberger,
Horne, and Zeilinger presented an elegant argument,
also known as GHZ paradox, where the conflict between
classical theories and quantum mechanics was shown to
be qualitatively stronger in this case than for two qubits
[3]. For N (N > 3) two-dimensional particles, Mermin,
Belinskii, and Klyshko separately generalized the CHSH
inequality and proved that the quantum violation of this
inequality increases exponentially with the number of
particles [4,5].

For two particles of dimension greater than two, it was
found that the CHSH inequality can be maximally vio-
lated in higher dimensional systems and this violation
continues to survive in the limit of infinite dimension [6].
In Ref. [7], the authors showed, using a numerical pro-
cedure with two separated observers who can choose
between two von Neumann measurements that the con-
tradiction between LR models and quantum mechanics
increases with the dimension, d. Their results were later
confirmed analytically in [8,9] where a Bell inequality
for two d-dimensional particles, also called qudits, was
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tight, in the sense that it defines one of the facets of the
convex polytope of LR models [10].

The experimental implementation, i.e., the two
von Neumann measuring apparatus, needed for the maxi-
mal violation of this inequality are relatively easy to
construct: they belong to the class of the so-called tritter
measurements (or unbiased six-port beam splitter) which
are experimentally realizable [11,12]. Surprisingly, the
maximal violation of the inequality is not obtained for
two-qudit maximally entangled state [13], an unexpected
result that still lacks of an intuitive explanation.

Moving to higher dimension, very little is known for
N-qudit systems, with N; d > 2. GHZ paradoxes have
been generalized in [14,15], and some numerical results
have been presented in [16] for three- and four-qutrit
systems. In this Letter, we present an interesting coinci-
dence Bell inequality for three qutrits in the case for
which each observer measures two noncommuting ob-
servables. This inequality imposes necessary conditions
on the existence of an LR description for the correlations
generated by three qutrits.We show the quantum violation
of this inequality in a Gedanken experiment whose mea-
surements are performed by the observers using unbiased
symmetric six-port beam splitters on a maximally en-
tangled state. The threshold for the violation is the same
as predicted numerically in Ref. [16].

We consider the following Bell-type scenario: three
space-separated observers, denoted by A, B, and C (or
Alice, Bob, and Charlie), can measure two different local
observables of three outcomes, labeled by 0, 1, and 2. We
denote by Xi the observable measured by party X and by
xi the outcome with X;� A;B;C (x � a; b; c). If the
observers decide to measure A1, B1, and C2, the result is
�0; 2; 1� with probability p �a1 � 0; b1 � 2; c2 � 1�. The
set of these 8� 27 probabilities gives a complete descrip-
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such Gedanken experiment. We denote by p �ai � bj �
ck � r� the coincidence probability

p �ai � bj � ck � r� �
X

a;b�0;1;2

p �ai � a; bj � b; ck

� r� a� b�; (1)

where all the equalities are modulo three.
Any LR description of the gedanken experiment, must

satisfy some constraints, known as Bell inequalities.
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Some of these constraints, such as normalization and the
no-signaling condition, are trivial, in the sense that these
conditions are also true for quantum mechanics. Thus the
latter are useless for performing a Bell test. Nevertheless,
it is possible to find more refined inequalities that do
allow one to check whether one can describe quantum
correlations by a classical model. For simplicity, we con-
sider coincidencelike inequalities, where only terms such
as (1) appear. Using the same ideas as in Refs. [8,9] one
can see that the following condition is satisfied by all LR
theories,
p �a1 � b1 � c1 � 0� � p �a1 � b2 � c2 � 1� � p �a2 � b1 � c2 � 1� � p �a2 � b2 � c1 � 1� �

p �a2 � b2 � c2 � 0� � p �a2 � b1 � c1 � 2� � p �a1 � b2 � c1 � 2� � p �a1 � b1 � c2 � 2� � 3: (2)
In order to derive this bound, we can restrict our
considerations to deterministic local models. This is be-
cause any probabilistic model can be transformed into a
deterministic one by simply adding some additional var-
iables [17]. Any of these models is completely specified by
fixing the outcome of all the six local observables, i.e., a
six-component vector ��1; �2; �1; �2; �1; �2�. The corre-
sponding probabilities are

p �ai � a; bj � b; ck � c� � �a;�i�b;�j�c;�k ; (3)

where a; b; c � 0; 1; 2 and i; j; k � 1; 2. The rest of LR
models correspond to convex combinations of these 36

points, i.e., they are the generators of the polytope of LR
models. Coming back to the previous inequality, if one
takes equal to one as many of the positive terms as
possible, trying to beat the bound, the local-realistic (LR)
constraints force some of the terms with negative sign to
take the value one. For instance, consider the case in
which the first term in each line is satisfied. This means
that a1 � b1 � c1 � a2 � b2 � c2 � 0. Therefore, if one
of the other terms in the first line is fulfilled, the corre-
sponding term in the second line with negative sign must
be also one. After some simple algebra, one can easily
show that for all the deterministic models saturating the
previous inequality, all the terms must be zero except
three of the four terms in the first line. In particular, the
fifth term with positive sign, p �a2 � b2 � c2 � 0�, can-
not be one if the inequality is saturated. In other words,
Eq. (2) gives at most 2 for all the models where a2 � b2 �
c2 � 0. This suggests that one can increase its weight
without changing the bound, the new inequality being
p �a1 � b1 � c1 � 0� � p �a1 � b2 � c2 � 1� � p �a2 � b1 � c2 � 1� � p �a2 � b2 � c1 � 1� �

2p �a2 � b2 � c2 � 0� � p �a2 � b1 � c1 � 2� � p �a1 � b2 � c1 � 2� � p �a1 � b1 � c2 � 2� � 3: (4)

This is the final form for our three-qutrit Bell inequality. We should stress at this point that the above inequality is a
member of the set of inequalities that can obtained from (4) by permutations of the indices enumerating the outcomes of
the measurements as well as by permutations of the indices enumerating the observables. One can see that this
inequality is tight, i.e., it gives one of the facets of the polytope of LR models. Indeed, the number of linearly
independent generators that saturate the inequality turns out to be equal to the number of linearly independent
generators, see Eq. (3), minus 1. This condition is satisfied only by tight inequalities [10].

Taking c1 � c2 � 0 in Eq. (4), one derives the two-qutrit inequality

p �a1 � b1 � 0� � p �a1 � b2 � 1� � p �a2 � b1 � 1� � p �a2 � b2 � 0� �

p �a1 � b1 � 2� � p �a2 � b1 � 2� � p �a1 � b2 � 2� � p �a2 � b2 � 2� � 2: (5)
Interestingly, this is just the inequality recently derived in
[8] for two-qutrit systems. As mentioned previously, this
inequality is known to be tight [10,18]. Moreover, if one
restricts the considerations to coincidence probabilities as
in Eq. (1), it is a necessary and sufficient condition for the
existence of a classical description (see [10] for more
details). Unfortunately, we were not able to derive from
Eq. (5) the Mermin-Belinskii-Klyshko inequality.

After deriving the Bell inequality, our next step will be
to look for quantum states and measurements violating it.
In the general approach to this problem, the initial three-
qutrit pure state shared by the parties is not fixed and
they can apply the most general quantum measurements,
i.e., the so-called positive operators valued measures
(POVM). Of course, this is a very hard problem. Indeed,
even if we restrict the possible measurements to projec-
tive ones (or von Neumann), each measurement is defined
by six real parameters. If we add the 52 real parameters
needed for specifying a three-qutrit pure state, we have
250404-2
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6� 6� 52 � 88 real parameters. Not all the parameters
are independent. Moreover, even if we consider local
unitary transformations to remove some parameters, it
is still not a tractable problem. We need to make some
assumptions.

First, as initial state, we take

j	i �
1���
3

p �j000i � j111i � j222i�; (6)

which can be regarded as a generalization of the maxi-
mally entangled state of two qutrits [19]. Next, we restrict
to the experimentally feasible tritter measurements, or
unbiased symmetric six-port beam splitters [11,12]. The
action of these devices in the computational basis is as
follows: first a phase factor is applied depending on the
initial state, i.e., jji ! ei�j jji, where j � 0; 1; 2. Follow-
ing this, a Fourier transform is performed and the re-
sulting state is measured in the computational basis.
Therefore, any of these measurements is defined by a
three-phase vector ~�� � ��0; �1; �2�, and the correspond-
250404-3
ing unitary transformation,

�UQFTU� ~���ij�
1���
3

p exp

�
i
2�
3
�i�1��j�1�

�
exp�i��i�1�:

(7)

The probability of obtaining the outcome �a; b; c�, given a
measurement apparatus for Alice, Bob, and Charlie
specified by the three-phase vectors ~��A; ~��B; ~��C, and an
initial state j�i 2 C � C3 � C3 is

p �a; b; c� � jhabcjUQFTU� ~��A� �UQFTU� ~��B�

�UQFTU� ~��C�j�ij2: (8)

Note that one can take, without loss of generality, the first
term in each phase vector equal to zero, i.e., ~�� �
�0; �;�0�. The phase vectors can be changed by the ob-
servers; they represent the local macroscopic parameters
available to them. For the coincidence terms appearing in
our Bell inequality and the state (6), tritter measurements
give simple and nice expressions, as it happens in the
bipartite case. It is easy to see that
p �ai � bj � ck � r� �
1

9

�
3� 2 cos

�
’�

2r�
3

�
�2 cos

�
’0 �

4r�
3

�
�2 cos

�
’0 � ’�

2r�
3

��
; (9)
where ’ � �Ai ��Bj ��Ck and analogously for ’0.
Indeed, all the probabilities appearing in Eq. (1) are equal
due to the symmetry in the state and the measurements,
i.e., p �ai � bj � ck � r� � 9p �ai � 0; bj � 0; ck � r�.

We can now look for the maximal violation of the
inequality, under the given assumptions. The optimal
settings correspond to the following phase vectors (the
first component of the phase vectors is always zero):

~�� A1 � �0; 0�; ~��B1 �
�
�
2�
3
;�
�
3

�
;

~��C1
�

�
�
3
; 0
�
; ~��A2 �

�
0;
2�
3

�
;

~��B2 �
�
�
2�
3
;
�
3

�
; ~��C2

�

�
�
3
;
2�
3

�
:

(10)

For this choice of settings, and the state (6), all the
probabilities terms with a positive sign are equal to 7=9,
while the terms with negative sign are equal to 1=9, so the
inequality gives 6� 7=9� 3� 1=9 � 39=9 ’ 4:33 > 3.

In Ref. [7], the so-called resistance to noise was pro-
posed as a measure of the strength of quantum correla-
tions for violating local realism. It specifies the amount of
white noise to be added to a system such that it looses its
nonclassical correlations. For a three-qutrit pure state
j�i, it is equal to the value of � such that the state

���; j�i� � �1� ��j�ih�j � �
1

27
(11)

admits a classical description. Note that 0 � � � 1. It
roughly estimates the distance between the quantum
probabilities and the polytope given by all the LR models.
It is a good measure of nonclassical condition due to its
simplicity and therefore it is easily computable when the
system is not too complex. However, it may lead to some
unexpected (and in some sense unwanted) results [13].
For instance, for two qutrits and two projective measure-
ments per party, it is maximized for a nonmaximally
entangled state [13]. This result seems to hold for arbi-
trary dimension [13], and it was generalized to the multi-
partite scenario and tritter measurements in Ref. [16].
There, it was also numerically shown that the resistance
to noise for the state (6), when any observer can choose
between two tritter measurements, is � � 0:4.
Remarkably, our inequality reproduces this result, since
���; j	i� does not violate it for � > 0:4.

With some measurements fixed, and depending on the
form of the Bell inequality, one can construct the so-
called Bell operator [20], B. For a quantum state �, the
function Tr�B�� gives its Bell value. The maximal viola-
tion of the inequality (with the initially chosen measure-
ments) corresponds to the maximal eigenvalue of this
operator. For our inequality (4) and the settings specified
by Eqs. (10), the Bell operator has a simple structure, with
blocks of 3� 3 matrices of nonzero entries. The maximal
eigenvalue of B is given by the maximal eigenvalue of the
3� 3 matrix Mij � 1� �i1�1� �j1� for the subspace
spanned by j000i; j111i; j222i. Therefore, the maximal
violation is equal to �3�

������
33

p
�=2 ’ 4:37, slightly larger

than the violation for the maximally entangled state. The
corresponding state, j	mvi, has the same form as the
state (6) but the coefficient of the j000i term is larger.
This is quite similar to what happens in the case of two
qutrits [13]. We have performed a numerical search for
the maximal violation of our inequality using tritter
250404-3
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measurements, and the result is given by the state j	mvi
and the phase vectors of Eqs. (10). This means that the
resistance to noise for the best Bell test using our inequal-
ity and tritter measurements is ’ 0:407. It was shown in
[16] that there exists a three-qutrit state for which the
resistance to noise, using tritters, is equal to 0.571.
Therefore, and contrary to what happens in the bipartite
case, our inequality does not allow one to reproduce this
maximal resistance to noise for tritter measurements,
although it does it for the maximally entangled state.

For more general measurements (von Neumann type),
we have numerically found that the maximal violation of
our inequality is indeed 4.3723. However, the resistance
to noise for the state (6) increases up to � ’ 0:527, which
cannot be predicted by our inequality. This value is
greater than 1=2, the maximal resistance to noise for
three-qubit states and two von Neumann measurements
per observer, that is obtained for the GHZ state, jGHZi �
�j000i � j111i�=

���
2

p
. Finally, it can be shown that our

qutrit inequality can be violated with a three-qubit
GHZ state and three-outcome measurements (of course,
not projective ones).

There are few results extending the Bell argument to
N-qudit systems (N; d > 2) where the disagreement with
LR models becomes more pronounced. In this article, we
have presented a coincidence Bell inequality for three-
qutrit states, where the parties can choose between two
noncommuting observables. Our inequality is optimized
for the case in which the initial state is equal to (6) and
tritter measurements are applied. Indeed it reproduces the
numerical predictions in Ref. [16]. Moreover, this in-
equality defines facets of the LR models. When restricted
to the bipartite case, it reduces to the Collins-Gisin-
Linden-Massar-Popescu inequality, which is also known
to be tight. Unfortunately, we could not extend the struc-
ture of our inequality to a higher number of parties or
dimension and this problem remains as an interesting
open question.

Tritter measurements have played a significant role in
the analysis of nonlocal correlations in bipartite quantum
systems. They suffice for revealing the states whose non-
classical correlations are most resistant against noise.
They are also optimal for N-qubit systems, since they
maximize the Bell violation for the Mermin inequality
and the GHZ state [4,21]. It follows from our previous
discussion that they are no longer optimal for more com-
plex systems (three qutrits), and more general measure-
ments are needed.
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Note added in proof.—After completion of this work,
we found that the presented Bell inequality reduces to the
Bell inequality of Chen et al. [22]when one restricts to
two outcomes. Numerical calculations indicate that this
second inequality is violated by all three-qubit pure en-
tangled states.
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