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External Time-Varying Fields and Electron Coherence
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The effect of time-varying electromagnetic fields on electron coherence is investigated. A sinusoidal
electromagnetic field produces a time-varying Aharonov-Bohm phase. In a measurement of the
interference pattern which averages over this phase, the effect is a loss of contrast. This is effectively
a form of decoherence. We calculate the magnitude of this effect for various electromagnetic field
configurations. The result seems to be sufficiently large to be observable.
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In our treatment, we assume an approximation in
which the electrons move on classical trajectories. More

the time at which the center of a localized wave packet is
emitted. If the measuring process takes a sufficiently long
The well-known Aharonov-Bohm phase [1] arises
when coherent electrons traverse two distinct paths in
the presence of an electromagnetic field. Let the two paths
in spacetime be denoted by C1 and C2. The phase differ-
ence due to the electromagnetic field, the Aharonov-
Bohm phase, is the line integral of the vector potential
around the closed spacetime path @� � C1 � C2:

# � �e
I
@�

dx�A��x�: (1)

By Stoke’s theorem, it can also be expressed as a sur-
face integral of the field strength tensor over a two-
dimensional surface � bounded by @�:
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This leads to the remarkable result that the electron
interference pattern is sensitive to shifts in the field
strength in regions from which the electrons are excluded.
The reality of the Aharonov-Bohm effect has been con-
firmed by numerous experiments, beginning with the
work of Chambers [2] and continuing with that of
Tonomura and co-workers [3] using electron holography.

If the electromagnetic field undergoes fluctuations on a
time scale shorter than the integration time of the experi-
ment, then the effect is a loss of contrast in the interfer-
ence pattern. The role of a fluctuating Aharonov-Bohm
phase in decoherence has been discussed by several au-
thors [4–10]. The amplitude of the interference oscilla-
tions is reduced by a factor of

� � hei#i; (3)

where the angular brackets can denote either an ensemble
or a time average. In the case of Gaussian or quantum
fluctuations with h#i � 0, this factor becomes

� � e�1=2h#2i: (4)

This form also holds in the case of thermal fluctua-
tions [8].
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generally, the electrons are in wave packet states.
However, under many circumstances, the sizes of the
wave packets can be small compared to the path separa-
tion, so the classical path approximation is good. Wave
packet sizes which have been realized in experiments
[11] can be less than 1 �m, which is 1–2 orders of mag-
nitude smaller than the other length scales characterizing
the paths. A more detailed discussion of the effects of
finite wave packet size was given in Ref. [7].

The purpose of this Letter is to discuss a particularly
simple version of this type of decoherence produced by a
classical, sinusoidal electromagnetic field. If the period of
oscillation of the field is short compared to the time scale
over which the interference pattern can be measured, then
a time average must be taken in Eq. (3), with a resulting
loss of contrast.

We consider the case of a linearly polarized, mono-
chromatic electromagnetic wave of frequency !, which
propagates in a direction perpendicular to the plane con-
taining the electron beams. Let the wave be polarized in
the z direction and propagate in the y direction, with the
plane of the electron paths being the x-z plane. For a path
confined to this plane, we have

1
2d
��F

�� � dtdxFtx � dtdzFtz � dxdzFzx: (5)

In the present case, where Ex � By � 0, Eq. (2) becomes

# � e
Z
dtdzEz: (6)

Let the z component of the electric field take the form

Ez�x�� � E�x; y; z� cos�ky�!t�; (7)

where the real modulated amplitude E�x; y; z� is assumed
to be a slowly varying function of y, compared with the
sinusoidal oscillation. We can write

#�t0� � e
Z
�
dtdzE�x; y; z� cos�ky�!t�!t0�; (8)

where t0 is the electron emission time. More precisely, it is
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FIG. 1. The two possible electron paths, C1 and C2, are
illustrated. The electrons start at point A and end at point D
after traversing a path which is approximated by three straight
line segments. Here � is the time required for the first and last
segments, and T is the time required for the middle segment.
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time compared with the electron flight time, we will
observe a result which is averaged over t0. Therefore, let
t0 be a random variable and take the time average over
that variable. That is, for a function f of a random time
variable �, the time average is defined by

hf���i � lim
�!1

1

2�

Z ��

��
d�f���: (9)

However, before taking the time average, we rewrite
Eq. (8) as

# � A cos�!t0� � B sin�!t0�; (10)

where

A � e
Z
�
dtdzE�x; y; z� cos�ky�!t�; (11)

B � e
Z
�
dtdzE�x; y; z� sin�ky�!t�; (12)

and we have the average of the time-varying phase factor
given by

� � hei#i � lim
�!1
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i�A cos�!t0��B sin�!t0��

� J0�jCj�; (13)

where J0 is a Bessel function and

C � A � iB � e
Z
�
dtdzE�x; y; z�ei�ky�!t�: (14)

Note that in the limit that jCj � 1, we can Taylor
expand the Bessel function J0 and write

� � 1�
1

4
jCj2 �

1

64
jCj4 � . . . : (15)

This agrees through order jCj2 with the result that would
be obtained from Eq. (4) for Gaussian fluctuations, as
h#2i � 1

2 jCj2.
As the strength of the applied field increases, the con-

trast factor � will monotonically decrease until the first
zero of J0 at jCj � 2:405 is reached. Beyond that point,
the contrast will begin to increase and then undergo
damped oscillations. This behavior is quite different
from that produced by Gaussian fluctuations, Eq. (4).

Now we study the possible effect on the electron inter-
ference if we shine a nonlocalized beam over the electron
paths. Because the plane wave extends to infinity in the
transverse direction, it is inevitable that the electron will
have direct interaction with the electromagnetic fields,
However, it will be shown later that the direct interaction
with the electromagnetic fields is extremely small, so it
can be ignored. Some years ago, Dawson and Fried [12]
discussed the effect of a laser beam on coherent electrons.
However, these authors were concerned with a change in
phase rather than the loss of contrast with which we are
concerned.
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Assume that the transverse plane wave of amplitude E0

propagates along the y axis and is polarized in the z
direction. The electron paths lie on the y � 0 plane and
are illustrated in Fig. 1. The quantity C is then given by

C � 4eE0
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: (16)

Here 2c is the maximum separation between the electron
paths. Experimentally attainable separations are of the
order of 100 �m [13].

The quantity jCj2 is written as

jCj2 � 16e2E2
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; (17)

where the squares of the sine functions have been replaced
by their average value of 1=2 and the averaged energy
density � is given by

� � 1
2E

2
0: (18)

We use Lorentz-Heaviside units with �h and the speed of
light set equal to unity. Thus, � is also the energy flux in
the electromagnetic wave. Note that � � s=v, where v is
the electron’s speed and s �

���������������
c2 � l2

p
is the length of the

first and third segments of the paths. If the electron’s
speed is nonrelativistic, we can write

jCj2 �

�
Ek

5 keV

��
�

1 W=cm2
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2c
s

�
2
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"
100 �m

�
4
; (19)

where Ek is the electron kinetic energy and " is the
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wavelength of the electromagnetic wave. Thus, it seems
plausible that one could arrange to have jCj2 large enough
to produce experimentally observable effects.

There are some comments on this calculation: First, we
assumed electron paths with sharp corners for simplicity.
If one were to round out the corners slightly to make more
realistic paths, the result need not change significantly.
This is because we are integrating a regular integrand
which varies on a time scale of the order of 1=!. If the
actual time scale for the electron to change direction is
small compared to this time, then our piecewise trajec-
tory is a good approximation. Note that here we are
discussing the change in contrast due to the applied field.
Sharp corners will tend to cause emission of photons,
which in turn lead to decoherence even in the absence
of an applied field. A second comment is that the con-
tributions of each of the three regions, I, II, and III, in
Fig. 1 is large compared to the final result for C by a factor
of the order of �!. However, the leading terms cancel
when the three contributions are summed, leading to
Eq. (17). Finally, we have assumed that the electron paths
are localized, whereas in an actual experiment the clas-
sical trajectories will be replaced by bundles of finite
thickness.What is required here is that the electron beams
be localized in the y direction on a scale small compared
to the wavelength of the electromagnetic field.

Since the electron passes through the region where the
electromagnetic fields are nonzero, it has a direct inter-
action with the fields. Because of the fact that the electron
is in nonrelativistic motion, in the low energy limit, only
Thomson scattering is considered. Let n be the mean
number density of photons, which can approximately be
expressed in terms of the electromagnetic energy density
� and the angular frequency ! as

n ’
�
!
; (20)

for very large n. As a result, the mean free path lmfp of the
Thomson scattering is given by

lmfp �
1

n
T
�

!

T�

(21)
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; (22)

where 
T is the Thomson cross section. We can see that
it is possible to have an incident flux which is large
enough to produce observable decoherence but for which
any effect from the electron-photon scattering may be
ignored. That is, loss of phase coherence due to direct
electron-photon scattering arises from the random accu-
mulated electron wave function phase shifts from one or
more such scattering events. However, in many realistic
situations, the probability of even one such event per
electron is close to zero.
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The above analysis shows that the change of contrast is
really due to a variant of the Aharonov-Bohm effect, the
averaging over the time-dependent Aharonov-Bohm
phase created by fields in the interior of the electron
path. It is not due to direct scattering between electrons
and photons. Nonetheless, it is also of interest to consider
a configuration where the applied electromagnetic field is
localized in a region between the electron paths. An
example is a Gaussian beam. Let the electric field in the
plane of the paths be given by

Ez��� � E0 exp

�
�

�2


2

�
cos�!t�; (23)

where � is the radius vector in the plane and 
 is the
effective width of the beam in this plane. This form is a
good approximation to the electric field of a linearly
polarized laser beam. Suppose that this beam is normally
incident upon the electron paths illustrated in Fig. 1, with
the center of the beam being at the origin in this figure. A
calculation which will be presented in detail in Ref. [14]
leads to the result, for the case that 
 & 2c and 
 & 2d,
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:

(24)

The crucial feature of this result is the factor of
exp��d2=
2�, which is extremely small in the limit of a
highly localized beam, 
 � d.

To summarize, in this Letter we have investigated the
effects of a rapidly varying Aharonov-Bohm phase upon
an electron interference pattern. If the time scale for the
variation is short compared to the time during which the
pattern is measured, then averaging over the phase vari-
ations leads to a loss of contrast. This is a form of
decoherence. In principle, the lost contrast could be re-
stored if one were able to select only those electrons
which start at a fixed point in the cycle of an oscillatory
Aharonov-Bohm phase. The form of decoherence studied
here is an example of zero temperature decoherence.
Other forms of zero temperature decoherence, which do
not rely upon thermal effects, have been discussed in
Refs. [15–17].

We have calculated the size of the decoherence effect
produced by a monochromatic, linearly polarized elec-
tromagnetic field. The result seems to be large enough to
be observable. We primarily treated the case of a non-
localized plane wave. In this case, although the electro-
magnetic field is nonzero at the location of the electrons,
we argued that one can have an observable loss of contrast
even when the probability of an electron scattering from a
photon is extremely small. A unique signature of the
decoherence produced by sinusoidal fields is that the
interference pattern can disappear and then reappear as
the field strength is increased.
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