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Shot Noise of a Quantum Shuttle
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We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific
example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the
Fano factor F, is computed. F reaches very low values (F ’ 10�2) in the shuttling regime even in
the quantum limit, confirming that shuttling is universally a low noise phenomenon. In approaching the
semiclassical limit, the Fano factor shows a giant enhancement (F ’ 102) at the shuttling threshold,
consistent with predictions based on phase-space representations of the density matrix.
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The aim of this Letter is to develop a quantum me-
chanical theory for the shot noise spectrum for quantum

2
(1)
Nanoelectromecanical systems (NEMS) are presently
a topic of intense research activity [1]. These devices
combine electronic and mechanical degrees of freedom
to display new physical phenomena and potentially may
lead to new functionalities. An archetypal example of
such a new phenomenon is the charge shuttling transition
exhibited by the device proposed by Gorelik et al. [2]:
here a movable nanoscopic object begins to transport
electrons one by one beyond a certain threshold bias. Re-
cent work has extended the original ideas to the quantum
regime (the motion of the movable part is also quantized)
and has shown that the shuttling transition occurs even in
this limit, albeit in a smeared-out form [3–6].

An unequivocal experimental observation of the shut-
tling transition has not yet been achieved. The IV curve
measured in the recent experiments on a C60 single-
electron transistor can be interpreted in terms of shuttling
[7], but also alternative explanations have been promoted
[8–10]. It is therefore natural to look for more refined
experimental tools than just the average current through
the device. An obvious candidate is the current noise
spectrum [11,12]. The measurement of the noise spec-
trum or even higher moments (full counting statistics)
reveals more information about the transport through the
device than just the mean current. The theoretical studies
of the noise have attracted much attention recently in
NEMS in general [13–15], as well as for the shuttling
setup [16–18] in the (semi)classical limit. More specifi-
cally, Pistolesi [16] reports a vanishing Fano factor in the
large amplitude limit of a driven shuttle. On the other
hand, a study by Isacsson and Nord [17] of a classical
system exhibiting shuttling instability found, somewhat
surprisingly, a higher Fano factor in the shuttling regime
than in the tunneling regime. This result is attributed to a
different confining potential used in [17] compared to the
other studies in this area.
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NEMS and apply it to the model introduced by Gorelik
et al. [2]. Our method combines the classical nature of the
charge transfer processes in the high bias limit [19] with
an operator version of a generating function technique
[20]. While the present work considers only Markovian
master equations, we believe that the method can be
generalized to the case where the dynamics of the me-
chanical degrees of freedom is non-Markovian. For sys-
tems where the current noise can be expressed in terms of
system operators (using the quantum optics language),
such as the quantum dot array of Ref. [3], an alternative
evaluation of noise, based on the quantum regression
theorem (QRT) is possible, and we have verified that the
two methods give identical results in this case [21]. We
stress that the converse is not true: QRT is not applicable
to the single-dot case.

Our previous quantum calculation [4] of the mean
current relied on a generalized master equation (GME)
for the system density matrices �ii�t� (�11 and �00 de-
scribe the occupied and empty dot, respectively, and the
off-diagonal components decouple from their dynamics
and can be neglected). In order to compute the noise
spectrum, we follow the ideas of Gurvitz and Prager
[22] and introduce number-resolved density matrices
��n�

ii , where n � 0; 1 . . . is the number of electrons tun-
neled into the right lead by time t. Obviously, �ii�t� �P
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with ���1�
11 �t� � 0. In (1), the commutators describe co-

herent evolution of discharged or charged harmonic os-
cillator of mass m and frequency ! in electric field E,
respectively. The terms involving �L;R describe the charge
transfer processes from/to leads while the mechanical
damping with the damping coefficient � is determined
by the kernel (at T � 0) [4]

L damp� � �
i�
2 �h

�x; fp; �g� �
�m!
2 �h

�x; �x; ���: (2)

The mean current and the zero-frequency shot noise are
given by [19]

I � e
d
dt
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� e
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where Pn�t� � Trosc��
�n�
00 �t� 	 ��n�

11 �t�� are the probabilities
of finding n electrons in the right lead by time t. Using
Eq. (1) we find I �

P
nn _PPn�t� � �RTrosc�e

2x=��11�t��;
i.e., one recovers the stationary current used previ-
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ously [4]. In a similar fashion,
P
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2 _PPn�t� �

�RTroscfe
2x=��2

P
nn��n�

11 �t� 	 �11�t��g, whose large-time
asymptotics determines the shot noise according to (4).
This can be computed using an operator-valued general-
ization of the generating function concept. We introduce
the generating functions Fii�t; z� �

P
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The equations of motion for Fii�t; z� are
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where we have introduced the block structure of the
Liouvillean (super)operator L � �L00

L10
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L11

�. Using the
F’s the shot noise formula can be rewritten as
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A Laplace transform of (5) yields
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where finit
ii �z� �

P
n�

�n�
ii �0�z

n depends on the initial con-
ditions. Defining the resolvent G�s� � �s �L��1 of the
full Liouvillean we arrive at
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In order to extract the large-t behavior we study the
asymptotics of the above expressions as s ! 0	. This is
entirely determined by the resolvent G�s� in the small-s
limit. Since L is singular (recall L�stat � 0) the resolvent
is singular at s � 0. To extract the singular behavior we
introduce the projector P on the null space of the
Liouvillean: P� � �

�stat
00

�stat
11
�Trsys���. We also need the

complement Q � 1� P . Using the relations PL �
LP � 0 and L � QLQ, the resolvent can be expressed
as G�s� � �sP 	 sQ�QLQ��1 � 1

s P 	Q 1
s�LQ �

1
s P �QL�1Q, in leading order for small s. The object
QL�1Q (the pseudoinverse of L) is regular as the ‘‘in-
verse’’ is performed on the Liouville subspace spanned by
Q where L is regular (no null vectors).

Substituting the asymptotic behavior of the resolvent
into Eqs. (8) and (9), keeping only the terms divergent at
s � 0 in both equations and performing the inverse
Laplace transform [23], we find the following large-t
asymptotics:
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where we have defined an auxiliary quantity � �

QL�1Q�
�Rex=��stat

11 ex=�

0 � and Cinit depends on initial condi-
tions. Using these in (6) we arrive at the final expression
for the Fano factor F � S�0�=2eI:

F � 1�
2e�R

I
Trosc�e2x=��11�: (11)

It is of crucial importance that this expression is inde-
pendent on the initial conditions [in the algebra leading to
(11) the linearly divergent terms in t and the initial con-
dition terms cancel identically]. � satisfies
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FIG. 1 (color online). Current I (upper panel) and Fano factor
F (lower panel; log scale) vs damping � for different transfer
rates � and tunneling lengths �. The parameters are � �
x0;� � 0:01! (dot-dash-dashed line); � � x0;� � 0:05!
(dot-dashed line); � � 2x0;� � 0:01! (full line); � �
2x0;� � 0:05! (dashes) with x0 �

��������������
�h=m!

p
. Other parameters

are eE=m!2 � 0:5x0; T � 0. The asterisk defines the parame-
ters of Wigner distributions in Fig. 2.
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Equations (11) and (12) together with the stationary ver-
sion of the GME

L
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�
� 0; with Trsys�stat � 1 (13)

form the main theoretical result of this Letter and are the
starting point for the calculation of the noise properties of
the quantum shuttle.

In general, these equations have to be solved numeri-
cally. However, there is an analytic solution to them in the
limit of small bare injection rates compared to damping,
i.e., �L;R � � � !. In this limit the oscillator gets
equilibrated between rare tunneling events and, conse-
quently, the state of the oscillator in a given charge state is
close to its corresponding canonical state, i.e. �stat

00 �

p00�osc�0�, �stat
11 � p11�osc�eE�, �osc�l� � e�!�Hosc�lx�=

Trosce
�!�Hosc�lx�, where only the probabilities p00;

p11 of the respective occupations are to be determined
from (13). By tracing Eq. (13) with respect to the oscil-
lator we find �~��Lp00 	 ~��Rp11 � 0 (with p00 	 p11 � 1)
where ~��L � �LTrosc�e�2x=��osc�0�� and ~��R �
�RTrosc�e2x=��osc�eE�� are the renormalized tunneling
rates. Proceeding similarly in the evaluation of � (this
intuitive approach can be easily justified with singular
perturbation theory, see, e.g., Ref. [20]), we set �stat

00 �
s00�osc�0�, �stat

11 � s11�osc�eE� and tracing Eq. (12) with
respect to the oscillator we arrive at �~��Ls00 	 ~��Rs11 �
I
e p11 (with s00 	 s11 � 0). Solving the equations for

pii; sii we find I � e
~��L

~��R
~��L	~��R

, F �
~��2

L	
~��2

R

�~��L	~��R�
2 , which is the

standard result for the two-state sequential tunneling
process [11,24]. The Fano factor depends only on the ratio
between the rates:

~��R
~��L

� �R
�L
exp 2eE

�m!2 . This result provides

us with the analytic asymptotical expressions for the
current and the Fano factor for small hopping rates �L;R
which we used to check our numerical routine.

In the general case Eqs. (13) and (12) must be solved by
truncation of the oscillator Hilbert space by retaining the
N lowest states of the oscillator and solving numerically
the resulting 2N2 � 2N2 linear systems. Since the re-
quired N for a satisfactory convergence could reach N �
100 resulting in big (nonsparse) linear systems we em-
ployed the Arnoldi iteration and generalized minimum
residual method for the solution of Eqs. (13) and (12),
respectively [25]. When properly implemented these
methods provided a fast solution with a modest memory
requirement [21].

In Fig. 1 we present the plots of the mean current and
the Fano factor as functions of the damping coefficient for
different parameters �, and � � �L � �R. The I vs �
curve shows the tunneling to shuttling crossover as damp-
ing is decreased, as explained in our previous work [4].
The crossover spans a narrower range of �’s in the case of
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� � 2x0 (x0 �
��������������
�h=m!

p
) compared to the � � x0 case.

Thus, already for � � 2x0 the shuttle behaves almost
semiclassically, where a relatively sharp transition be-
tween the two regimes is expected. Around the transition
the tunneling and shuttling regimes may coexist, as
shown analytically in [6]. We see this phenomenon ex-
plicitly in Fig. 2 where we plot the Wigner distribution
functions defined by

Wii�X; P� �
Z 1

�1

dy
2& �h

�
X �

y
2

��������stat
ii

�������X 	
y
2

�
exp



i
Py
�h

�
(14)

for a specific set of parameters corresponding to the
‘‘most classical’’ curve around the transition in Fig. 1
denoted by the asterisk. The Wigner plots show the qua-
siprobability distributions in the phase space of the oscil-
lator resolved with respect to its charge state and prove
the coexistence of the tunneling regime (characterized by
the spots around the phase-space origin) and the shuttling
regime with the half-moon or ringlike shapes in W00,
W11, or Wtot, respectively [4]. This semiclassical transi-
tion is accompanied by the nearly singular behavior of the
Fano factor reaching the value � 600 at the peak. This is
in agreement with the recent classical study [17] where
the singularity of the Fano factor at the transition was
also predicted.
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FIG. 2 (color online). Phase space picture of the shuttle
around the transition where the shuttling and tunneling regimes
coexist. From left to right we show the Wigner distribution
functions for the discharged (W00), charged (W11), and both
(Wtot � W00 	 W11) states of the oscillator in the phase space
(horizontal axis: coordinate in units of x0 �

��������������
�h=m!

p
; vertical

axis: momentum in �h=x0). The values of the parameters are
(corresponding to the asterisk in Fig. 1): � � 2x0; eE=m!2 �
0:5x0; � � 0:029!;� � 0:01!; T � 0.
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More important, however, is the behavior in the shut-
tling regime. We can see in Fig. 1 that the Fano factor is
very small in the shuttling regime. This is true even in the
strongly quantum case � � x0 where the transition peak
characteristic of the classical case is almost totally
missing. As found previously [4] the classical transition
is strongly smeared by the quantum noise into a broad
crossover which is reflected by the absence of the peak in
the Fano factor. Nevertheless, the shuttling regime still
persists and is again characterized by a low noise.

To conclude, we have presented a generic method of the
calculation of the shot noise for quantum nanoelectrome-
chanical systems and applied it to a quantum shuttle
system. We show that even in the quantum case the
shuttling regime is characterized by a highly ordered
charge transfer mechanism accompanied by the low cur-
rent noise compared to the tunneling regime. When ap-
proaching the semiclassical limit, the Fano factor shows a
giant enhancement at the shuttling threshold, consistent
with other classical studies and with the phase-space
analysis of the stationary density matrix.
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[11] Y. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
[12] C. Beenakker and C. Schönenberger, Phys. Today 56,

No. 5, 37 (2003).
[13] A. Mitra, I. Aleiner, and A. J. Millis, cond-mat/0311503.
[14] A. D. Armour, cond-mat/0401387.
[15] N. M. Chtchelkatchev, W. Belzig, and C. Bruder, cond-

mat/0401486.
[16] F. Pistolesi, cond-mat/0401361.
[17] A. Isacsson and T. Nord, Europhys. Lett. 66, 708

(2004).
[18] A. Romito and Y.V. Nazarov, cond-mat/ 0402412.
[19] B. Elattari and S. A. Gurvitz, Phys. Lett. A 292, 289

(2002).
[20] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry (North-Holland, Amsterdam, 1992).
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