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Coulomb Scattering in a 2D Interacting Electron Gas and Production of EPR Pairs
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We propose a setup to generate nonlocal spin Einstein-Podolsky-Rosen pairs via pair collisions in a
2D interacting electron gas, based on constructive two-particle interference in the spin-singlet channel
at the 77/2 scattering angle. We calculate the scattering amplitude via the Bethe-Salpeter equation in the
ladder approximation and small r; limit and find that the Fermi sea leads to a substantial renormal-
ization of the bare scattering process. From the scattering length, we estimate the current of spin-
entangled electrons and show that it is within experimental reach.
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In recent years, the spin degree of freedom of electrons
has become of central interest in semiconductor research
[1]. This is particularly so for spin-based quantum in-
formation processing, where the basic resources are
Einstein-Podolsky-Rosen (EPR) pairs such as nonlocal
spin singlets formed by two electrons that are spatially
separated [2]. A number of recent publications have de-
scribed ways to produce such spin-correlated two-
electron states [3—-5], as well as orbital entanglement
[6]. Here we propose a new scheme based on electron
flow in an open system that avoids experimental compli-
cations, such as coupling different materials or transport
channels [3,5,6] or implementing small quantum dots
with well-controlled Coulomb blockade effects [4]. Our
concept is based on a two-particle interference mecha-
nism that is well known from elementary scattering
theory [7]: the cross section for two electrons in vacuum,
given in terms of the scattering amplitude f by Ag,7(6) =
|£(6) = f(m — 6)|, favors singlet ( + ) over triplet ( — )
states in the outgoing channel around the scattering angle
0 = /2. Thus, in principle, two-particle scattering pro-
cesses can be used to generate EPR pairs. However, in the
context of solid state systems, the question immediately
arises whether this scattering effect remains operational,
and moreover observable, in the presence of a Fermi sea
consisting of many interacting electrons, such as a typical
two-dimensional electron gas (2DEG) formed in GaAs
heterostructures. In this Letter, we will show that within
Fermi liquid theory the answer is affirmative.

We focus on 2DEGs since these systems are promising
candidates for the observation of such effects. Indeed,
recent experiments [8] have demonstrated that in a
2DEG the flow of electrons as well as scattering off
impurities can be controlled and monitored via atomic
force microscopy (AFM) technology. Thus, we believe
that a setup as shown in Fig. 1(a) is experimentally
realizable and should allow the observation of the angular
and density dependence of the scattering cross section.
Once the EPR pairs are created, their singlet character
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can be tested [9] by a noise measurement in a beam-
splitter configuration [2] or by tests of Bell inequalities
[10]. We note that the experimental observation of this
type of entanglement would provide support for the ap-
plicability of Fermi liquid theory to 2D systems, which
has been questioned by Anderson [11]. Indeed, one can
hardly imagine singlet pairs of particles that are sepa-
rated by mesoscopic distances without well-defined fer-
mionic quasiparticles.

For electrons incident from unpolarized sources, we
expect the ratio of singlets |S) to triplets |T,) (u =
0, =) to be 1:3, this mixed state being described by the
density matrix 1/4|SXS| + 1/43 T, XT,|. Our goal is
to calculate the ratio of scattered triplets to scattered
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FIG. 1 (color online). (a) Proposed setup: two quantum point
contacts filter electrons from two reservoirs with initial mo-
menta p; = —p,. The two detectors (with an aperture angle
266) are placed such that only electrons that collide (shaded
area) at a scattering angle around 7/2 are registered. Because
of interference, the scattering amplitude vanishes at 77/2 for
the spin-triplet states, allowing only the spin-entangled sin-
glets to be collected: one electron of the singlet state in
detector 1 and its partner in detector 2. The scattering cross
section and the electron flux could be measured via an AFM tip
[8]. (b) Scattering parameters: P = p; + p, = p} + p} is the
total momentum, p = (p; — p,)/2 and p’ = (p| — p})/2 are
the relative momenta, and 6 = Z(p, p’) is the scattering angle
between them. The initial (p,, p, ) and final (p}, p}) momenta
are connected by a circle of radius p = p’ due to energy and
momentum conservation.
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singlets for an aperture angle 266 of the detectors around
0 = /2. For small 86 this ratio is R = 502|f’/f|§:77/2,
where f is the many-body scattering amplitude and f' =
df/d6. Solving the Bethe-Salpeter equation in the small
r, limit, we shall find that |f'/f]*> ~ 1 at @ = /2. This
means that for small 66 the scattering process domi-
nantly produces singlets in the direction of detectors 1
and 2; see Fig. 1(a). As an experimental check, this ratio
can be increased by reducing the amount of singlets in the
incoming channels, which in turn can be achieved, e.g.,
by using spin polarized electron sources or devices that
act as spin filters, such as a quantum dot [12] or a quantum
point contact [13].

Setup.—We begin with a description of the setup,
shown in Fig. 1(a). Electrons escaping from thermal
reservoirs with momenta p; =~ —p, are filtered by two
quantum point contacts (QPC) and injected into a 2DEG
where they scatter off each other. To collect after the
collision only the entangled singlets (EPR pairs), we
place two detectors such that only collisions of electrons
with final momenta p}, p5 and with scattering angle § €
[7/2 — 86, 7w/2 + 50] are registered. Below we estimate
the expected singlet flux (current).

As seen from Fig. 1(b), the energies of both incident
electrons need to be known, in general, to determine the
scattering angle 6 =~ /(p’, p). However, for the special
case with opposite momenta p, =~ —p;, 6 is easily deter-
mined by 6 = £(p), p;). Moreover, the energies are then
individually conserved, p, = p, = p| =p} (p, = |p.]).
which ensures that the outgoing scattering states are
unoccupied (pj, > kp). Finally, to have well-defined
quasiparticle states with long lifetimes [14], we assume
the electrons to be injected with small excitation energies
& = R*p?/2m — Ep < Ep, where Ep = I?k%/2m is the
Fermi energy and m the effective mass.

Scattering t matrix.—Let us evaluate the scattering ¢
matrix for two electrons in the presence of the Fermi sea.
The condition p, = —p; defines the Cooper channel, and
thus we can follow the work by Kohn and Luttinger on
interaction-induced superconductivity in a 3D Fermi
liquid [14]. In contrast to Ref. [14], we consider here a
2D system where the screened Coulomb potential is non-
analytic. Moreover, we need the complete angular depen-
dence of the scattering amplitude —rather than only the
asymptotic of its Legendre or Fourier coefficients. The ¢
matrix can be obtained from the (direct) vertex I' gov-
erned by the Bethe-Salpeter equation [14,15]

L(p', p;P)=A(p, p; p)
l kA (k, p; P k A T

s f dkA(k, p; PG (k,)G(ky)T (B, k: P),

(1)

where G is the single-particle Green function and A is the
irreducible vertex (we suppress the spin indices as spin is
conserved). Here k;, = P/2 * k and p; = (p;, w;), with
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the frequencies w,. The full vertex for singlet/triplets
contains the direct and exchange parts, i.e., I'(7, p; P) *
I'(—p', p; P). From the vertex we obtain the 7 matrix: r =
INw, + wy, — & + &) [15], and from it the scattering
length A = |f|*> via the 2D scattering amplitude f =
—tm/h*\2mp [16]. The scattering lengths for singlet/
triplets are then given by Ag/7(6) = |£(6) = f(6 — m)|*.

The bare Coulomb interaction in 2D is given by [17]
Ve(q) = 2med/q, with €3 = €2 /4e €, and the dielectric
constant €,. In a first stage, we use the RPA approximation
to account for screening by the Fermi sea [15]; this yields
a renormalized G and a screened interaction V(§) =
Ve(q)/[1 — Ve(g)x°(§)] given in terms of the bubble
susceptibility diagram x°, where § = (q, 0,) = p' — p
is the momentum transfer. We can consider [18] the usual
static Thomas-Fermi screening V(q) = 2me3/(q + k),
with the screening momentum k, = 2me}/h*> and r, =
k,/kp~/2. Note that RPA requires a high density, r, < 1.

In addition to the single interaction line V(g), the
irreducible vertex A contains, in lowest order in V, two
diagrams: the crossed diagram and the “wave function
modification,” shown in Figs. 2(c) and 2(d) of Ref. [14]. It
is easy to see that these are smaller than V by a factor r,
[19]. Altogether, this justifies the ladder approximation,
which consists in keeping only the single interaction
line in A = V. Note that the ladder approximation re-
quires Akp < 1 [15]. This condition is consistent with
RPA, e.g, in the Born approximation ¢=V,=
Mg ~ [Velkp)ym?/2mh* ~ (ky/kg)*> ~ r2. Finally, we
can approximate G by the free propagator G, [14]. We
start with the zero temperature 7 = 0 case and discuss
finite T later.

Before solving Eq. (1) to all orders, we first consider its
second-order iteration I'®(p’,p:P) = V(p’ — p) +
i/h2m)® [ dkV(k — p)G(k)G(ky)V(p’' — k). The wy in-
tegration of the Green functions yields [15]

L dkaO(kl’ Q/Z + a)k)Go(kz, Q/Z - a)k)

2mh
N(ky, k)

_ é:kz + ZlnN(kl, kz) =: D(kl’ k2)» (2)

T - &,

with N(kl, kz) =1- I’l(kl) - I’l(kz), n(k) = @(_-fk), and
the P frequency is iQ) — &, + &,.We now takep = p, =
—p>. =k =Kk, = —K,and g = |p’ — p| = 2kg|sin0/2|.
This yields a single discontinuity in the numerator when
&, = 0, which coincides with the zero of the denominator
at £, = £ for incident electrons with vanishing excitation
energies ¢ = &, — 0. Thus, the main contribution to the
energy integration comes from virtual states at the Fermi
surface, i.e., £, =~ 0.We set k = kr in V and integrate only
on D(k, k). Writing v := (1/2) [ dkkD(k, k), we obtain

3

=~ —log—=. 3
g 27h? OgEF )

For finite temperatures with ¢ < kgT <K Ep, the
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occupation function n(k) = (1 + e/%7)~1 cuts the
log divergence and ¢ is replaced by kg7 in Eq. (3).
This logarithmic divergence reveals a 2D Cooper singu-
larity (see below) very much like in 3D [15]. Next, we
examine the situation slightly away from the Cooper
channel, i.e., for nonvanishing total momentum. Indeed,
for experimental reasons it is preferable to have a small
but finite angle 2a = Z(p;, —p,) between the incident
particles to avoid flux misalignment with no collision
at all. In this case, at T=0 and for p, = p,, we
find that N(k, @) =~ Ok — kr — pa|sing|) — O(ky —
k — palsing|) depends on the integration angle ¢ =
/(k,p), and, as a consequence, we find now »(¢) =
(m/2mh%)log(2al sing|) in the limit p — ky. However,
we recall that both outgoing scattering states must be
unoccupied, which at 7 = 0 requires p, > kg. For 7/2
scattering, p', = pi(cosa * sina) = p; = kp(l + @);
see Fig. 1(b). Thus, a < ¢/Ep and the relevant cutoff in
Eq. (3) remains ¢ or kpT.

We repeat this procedure in each order in V and re-
write Eq. (1) as #(0) = v(0) + (v/27) [dpv(p)t(6 — &),
where v(¢) = 2me*/(2kg| sing /2| + k) is the potential
V at the Fermi surface. To solve this equation, we expand
v and t into Fourier series: v(¢p) = Y, v,e"?, etc. We
finally get, for the ¢ matrix at the Fermi surface,

i) = 2 eint, 4)

—1 -y,
with the Fourier coefficients

4e3 cos(my)
2n+m

FCOSY oadm=1
and y = arcsin(r,/~/2). Below, we use this result to evalu-
ate the scattering length.

Scattering length—To illustrate how the scattering
process gets renormalized by the Fermi sea, we compare
the above result (4) with the ¢ matrix [t-(6)] =
eohiltanh(mme} /kh?)/mkpsin®(6/2)]"/? obtained for
the bare Coulomb potential V- in 2D [16]. We use typical
parameters for a GaAs 2DEG: €, = 13.1, r, = 0.86, and a
sheet density n = 4 X 10" m~2 [17], and we assume ¢ <
kgT = 10 2Ep (T = 2 K). In Fig. 2(a) we plot the scat-
tering length A(6) = |tm/h*\/27ky|* as function of the
scattering angle € (without antisymmetrization). The re-
duction in amplitude due to the Fermi sea is seen to be
quite substantial (compared to the bare #.), which can be
traced back to the relatively large screening k, (r, =
0.86). We also have t — 0 as kg7, £ — 0.

The higher-order terms appearing in the iteration of
the Bethe-Salpeter equation further reduce the scattering
(compare ¢ to the first order V). For large T or away from
the Cooper channel (a ~ 1), the logarithmic divergence v
disappears, and the contribution of higher-order terms
becomes negligible; this yields the Born approximation
t = V. For very small r;, we can drop vv, < 1in Eq. (4)

246803-3

15 108 07 06 s
. — 3y >
(a) \ \ v
8 \ \‘ c (b) ©

scattering length A [nm]

0

R T T 5.10° & 16
scattering angle 6 sheet density n [m 7]

FIG. 2 (color online). Plots of scattering quantities obtained
from the ¢ matrix (4) for r, = 0.86 (GaAs) and kzT/Ep =
1072. (a) Angular dependence of the scattering length A(6). We
compare A to its Born approximation given by ¢ = V and to the
bare scattering of two particles (no Fermi sea) given by the
exact result (¢#c) or by the first order (V). (b) Dependence of
A(7/2) on the sheet density n (see r, = me3/h*\/mn in top
axis). (c) Ratio R(6, 86) of triplets/singlets detected at a scat-
tering angle 6 for an aperture 660 = 5°.

and find the bare potential, = V. In Fig. 2(b) we see the
significant reduction of the scattering length A as the
density 7 is increased, which could be tested experimen-
tally via a top gate.

Production of EPR pairs.—We now turn to the produc-
tion of entangled electrons in the spin-singlet state. We
consider detectors placed at 8, with a small aperture angle
of 266 (Fig. 1). We introduce the scattering lengths around
6 for singlets and triplets, Ag/7(6) =2 [§_5, d0'| f(6') =
f(m — @'|>. A useful measure is the ratio between the
number Ny, of detected triplets/singlet, R(6, 60) =
Nr/Ng = 3A;/Ag. Expanding for small 80 around 6 =
/2, we find in leading order Ay = 8|f(7/2)|>66, and
Ar = (8/3)|f(7/2)|?863, which yields

f(a/2)
f(m/2)

Using Eq. (4), we find |f’/f| = 0.48 at 6 = 7/2 for
GaAs, and note that this ratio remains of order unity for
a wide parameter range kzT/Er = 107'-1071°, and r, =
0.1-1. Therefore this setup indeed allows the selection of
singlets (EPR pairs) at detectors 1 and 2, provided the
aperture angle is sufficiently small—even for electrons
injected with some angular spread. For example,
R(90°,5°) = 0.2% or R(85°,5°) = 0.7%; see Fig. 2(c).
The Born approximation |V//V|=1/2(1 + r,) =~ 0.266
is approached for kzT/Er > 107",

To estimate the singlet current for a given input cur-
rent /, we assume that the incident electrons occupy the
lowest transverse mode in the QPC, giving plane waves of
transverse width w (typically w = 100 nm). The proba-
bility for the singlets to be scattered into the detectors is
Py = (1/4)Ag/w = 0.06%, where Ag= 0.24 nm for
66 = 5°. It is advantageous to inject simultaneously the
two electrons from the reservoirs (e.g., by opening both
QPCs simultaneously) [20]. Then the singlet current is
given by I¢=Pgl=06pA for I=1nA. The

2

R(m/2, 86) ~ 562, (6)
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total scattering length for unpolarized electrons
is Ao = (1/4) [, d0[A5(6) + 3A(6)] = 3.4 nm in
GaAs (compared to 11 nm in Born approximation). This
is consistent with the ladder approximation (Akr =
0.53) and yields the total scattering probability P, =
Aot/ W = 3%.

It is crucial to count at detectors 1 and 2 only electrons
that have scattered off each other at @ = /2, while
avoiding the counting of uncorrelated electrons that are
accidentally scattered into the detectors due to, e.g., im-
purities. This requirement could be fulfilled by coinci-
dence measurements or with the help of an ac modulation
applied to each reservoir with different frequencies w,
and w,. This would enable a frequency selection of the
electrons that have interacted, as they are modulated by
the two frequencies w; * w,. We also note that the elec-
trons diffracted at the exit of the QPCs could be refocused
by a lensing effect [21] obtained via an appropriately
shaped top gate.

Besides the observation of the scattering length and its
density and angular dependence, our proposal could be
further tested by adding a beam splitter to probe the
singlet state via noise measurement [2,9], by performing
tests of Bell’s inequality [9,10] with spin filters [12,13], or
by using p-i-n junctions [22] to transform singlets into
entangled photon pairs. An alternative test requires spin
filters, obtained, e.g., by tuning the QPCs into the
spin-filtering regime [13] or by replacing them by spin-
filtering quantum dots [12]. Then, with increasing spin
polarization 2, the probability of incoming singlets pg =
(1 — P?)/2 is suppressed, and the singlet current at § =
7r/2 vanishes at full polarization P = 1.

We now comment on the Kohn-Luttinger instability
[14]. The crossed diagram—which in 2D can lead to an
instability only for excitations with ¢ > 2k [23]—does
not lead to a strong renormalization of the scattering
vertex, as the associated temperature is infinitesimal,
kgT/Ep ~ exp(—10%) [24]. This is larger than the value
~exp(—10%) found in 3D [14], despite the asymptotic
decay for v, ~ n~? being slower than in 3D, v, ~ ¢/
(the decay is polynomial because the 2D potential is
nonanalytic). The crossed diagram, given by the polar-
ization propagator, has asymptotic ~n~3/? instead of
~I1~%* in 3D. Finally, we also checked that the repulsive
electron-electron interaction is not appreciably affected
by polar or acoustic phonons [24].
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