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We derive an effective Hamiltonian H for an ionic Hubbard chain, valid for ¢t < U, A, where ¢ is
the hopping, U is the Coulomb repulsion, and A is the charge-transfer energy. H.s is the minimal model
for describing the transition between the band insulator (BI) (A — U > r) and the Mott insulator (MI)
(U — A > 1). Using spin-particle transformations [Phys. Rev. Lett. 86, 1082 (2001)], we map H (U =
A) into an SU(3) antiferromagnetic Heisenberg model whose exact ground state is known. In this way,
we show rigorously that a spontaneously dimerized insulating ferroelectric phase appears in the

transition region between the BI and the ML
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It is well known that the insulating state can have
different origins. The simplest case is the band insulator
(BI) since it is one of the possible solutions for noninter-
acting electrons moving in a periodic potential. In par-
ticular, the BI occurs when the number of particles per
unit cell is even, so the bands are either full or empty. The
other traditional example of insulating state is the Mott
insulator (MI). In this case, the charge localization is just
a consequence of the local Coulomb interaction U be-
tween the electrons. The charge gap of the BI is just the
band gap. In the case of the MI, this gap is a function of
the Coulomb repulsion and goes asymptotically to U in
the strong coupling limit. These two insulating states have
completely different properties. For instance, the BI’s are
paramagnets while the MTI’s, in general, are antiferro-
magnets. This observation raises the following question:
What happens when a system evolves continuously from
the BI to the MI state?

To find an answer to this question has been the main
motivation for studying the ionic Hubbard model (IHM)
during the last ten years. The IHM was originally pro-
posed in the 1980s to describe the neutral-ionic transition
in mixed stack charge-transfer organic crystals [1,2].
This model is a Hubbard Hamiltonian on a bipartite
lattice with different diagonal energies for the two sub-
lattices. The difference between both energies is A.
During the 1990s, there was a renewed interest in the
IHM due to the potential applications to the description of
the ferroelectric (FE) perovskites [3—5]. At half filling,
the ground state of the IHM is an ionic or BI for A > U
and a MI for U > A. Field theory arguments in one
dimension pointed out the existence of an intermediate
bond ordered insulating (BOI) phase for A < U < ¢ [5].
For t < U, A, perturbation theory clearly describes the
BI (t < A — U) and the MI (r < U — A) [2], including
the charge dynamics of the latter [6]. However, perturba-
tion theory diverges in the transition region and no insight
is provided for the BOIL The numerical solutions of finite
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chains [7-10] have difficulties and contradictory conclu-
sions were reported. The reason will become clear after
deriving the main result of the present Letter.

Contrary to the cases of the BI and the MI states, no
exact solution having long range bond ordering is known
for the transition regime. Finding an exact ground state is
not only crucial to prove the existence of the BOI phase
rigorously but also to understand its microscopic origin
and fundamental properties. This result becomes even
more important if we consider that the BOI phase is an
electronically induced spin-Peierls instability that gener-
ates a FE state out of the spin-singlet dimer pairs. In
particular, a bond ordered FE state was observed in the
pressure-temperature phase diagram of the prototype
compound, tetrathiafulvalene- p-chloranil [11,12]. In addi-
tion, as it was pointed out by Egami et al [3], the micro-
scopic origin of the FE transition in covalent perovskite
oxides like BaTiO; is still unclear. It is known that a
picture based on static Coulomb interactions and the
simple shell model is inadequate to describe some FE
properties [13]. The exact result presented here demon-
strates that when an ionic insulator gets close to a charge-
transfer instability (strong covalency), an electronic
mechanism for ferroelectricity takes place.

In this Letter, we first derive an effective Hamiltonian,
H., for the limit U > ¢t and A > ¢ of an extended IHM
that includes a nearest-neighbor Coulomb repulsion V. By
means of the generalized spin-particle transformations
introduced in Refs. [14-16], we map H into an aniso-
tropic SU(3) antiferromagnetic Heisenberg model that
becomes isotropic for U = A and particular values of
the other parameters. The isotropic model is exactly solv-
able [17-19] and is also equivalent to the biquadratic § =
1 Heisenberg model. The exact ground state is a dimerized
spin system that becomes a BOI when translated back to
the original fermionic variables.

We start by considering an ITHM with an additional
Coulomb interaction V between nearest neighbors:
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where n;, = fl-t,fig, n; => N, and ¢t > 0. Note that
A > 0 is the diagonal energy difference between sites in
different sublattices.

We consider only the half-filled case p = 1, i.e., one
particle per site. If + =0, the ground state of H is a
nondegenerate BI for U < A + 2V. There is only one
low-energy state per site: the odd sites are doubly occu-
pied and the even sites are empty (see Fig. 1). For U >
A + 2V the ground state is a degenerate MI (one particle
per site) and the low-energy subspace has two states
per site due to the spin degeneracy. When ¢ is finite and
small, far from the transition region the low-energy
Hamiltonian of the MI is a Heisenberg model and the
degeneracy is lifted in favor of a spin-density wave [2,6]
(see Fig. 1). However, to describe the transition region, we
need to include rhree states per site in the low-energy
subspace H . In order to construct an effective
Hamiltonian in JH , it is convenient to perform an elec-
tron-hole transformation for the odd sites:

t — _ t —
it fw ¢ = fn’
for even i.

for odd i;
(2)

After this transformation, H becomes invariant under a
translation of one lattice space (i — i + 1). The low-
energy subspace JH, is now defined as the set of states
with no double occupancy on any site. This constraint can
be incorporated by deﬁmng the constralned fermion op-
erators: ¢ = ¢l (1= ¢l c,;) and ¢, = (¢} )T. In addi-
tion, to connect our low-energy theory with spin
Hamiltonians (see below), we introduce the following
transformation:

Ionic Insulator
Woe W e H O
Mott Insulator
b ¢ 6 % b ¢
Bond Ordered Insulator

-— -
o - e b b ¢

FIG. 1 (color online).
states of H. .
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Schematic plot of the different ground

t =1

Eil_’_cil fori=4n and i=4n+1; 3)
¢h— —¢h fori=4n+2 and i=dn+ 1.

The high-energy subspace FH | consists of all states that
have at least one double occupied site. The only term of H
that mixes H  and JH | is the hopping term . By means
of a second order canonical transformation that elimi-
nates the terms proportional to 7, we obtain the following
effective Hamiltonian for the low-energy spectrum of H:

A-—U_
eff_tz(ctol+la'+HC)+ 2 n;

i

Cy 1__
+ JZ<S?SIZ'+1 — SISty T SIS ZninHl)
i
- VZ(l — )1 = fipy), (4)

where 71; = Z(,c,(, ¢, and s& = 1/25 &l o,¢,, with
a ={x,y,z} (o” are the Pauh matrices). The exchange
interaction J = 2¢2/(U + A — V) comes from a second
order process in the hopping ¢. In this derivation we have
neglected the second order three-site hopping term. The
negative sign for the xx and yy interactions is just a
consequence of the gauge transformation of Eq. (3).

If t ~ Vand A — U > ¢, the ground state of H; is the
empty state that corresponds to the BI in the original
language. For U — A > ¢, the ground state has one par-
ticle per site. By eliminating states with empty sites with
another canonical transformation, H.y reduces to the
Heisenberg model that describes the strong coupling limit
of the MI. We are interested in the transition regime U ~
A. To analyze this case, we allow J to vary independently
of the other parameters. In other words, we consider Hg;
as an independent minimal model for describing the
transition between the BI and the ML

To exploit the symmetries of H.y, it is convenient to
use the generalized Jordan-Wigner transformations intro-
duced in Refs. [14-16]. In particular, for this case it is
appropriate to rewrite H in terms of the hierarchical
SU(3) language [16]. To this end, we need to map the
constrained fermion operators in one sublattice (say A)
into SU(3) spins in the fundamental or “quark’ represen-
tation [15,16]:

i e o
AN _
S@) = cJJ.rTKj ndr 3 Gy | 5)
= AT = 7. —1
ik iy My T3

where K; is the kink operator [14]:

K, = exp[inﬁk} (6)

k<j

that transmutes the statistics. The components S#¥
are generators of the su(3) algebra with commutation
relations [S##(j), S ()] = 8,1, 5" (j) = 8,5 ()).
We also make use of the conjugated or “antiquark™
representation
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to describe the degrees of freedom of the B sublattice.
Equations (5) and (7) are generalizations of the Jordan-
Wigner transformations to SU(3) spins [15,16]. The re-
sulting Hg is as an anisotropic SU(3) Heisenberg model
with an applied “magnetic field”’:

Hee = > J,,S* ()8 (i + 1) — BY SPG), (8)

iIEA 1, v i

with Joo ==V, Jy=Jp=—t, Ju=Jpn=JIn=
—J/2, Jyy =J,u, and B=2V/3—J/3+U/2 - A/2.
Note that this model connects SU(3) spins in the A sub-
lattice with the conjugate SU(3) spins (antiquark repre-
sentation) in the B sublattice. Let us now consider
V =J/2 =t and U = A. For this line in the space of
parameters H.g i an isotropic SU(3) antiferromagnetic
Heisenberg model that is invariant under staggered con-
jugate SU(3) rotations, R and R, on sublattices A and B,
respectively. This model is integrable [17-19] and the
exact solution is a spin-dimerized ground state. In the
original language this is equivalent to saying that the
charge and the spin are both dimerized (bond ordering).
The exact ground state energy per site is ey/r =
—1.796864.... The value of the gap is A/t=
0.173 178, a rather small value, and the correlation length
¢ =21.0728505... is very large [19]. This explains the
numerical difficulties for identifying this phase.

To relate the dimerization in SU(3) and the bond order-
ing of the fermionic variables, we need just to translate
the corresponding order parameter from the SU(3) lan-
guage back to our original fermionic language. The spin-
dimer SU(3) order parameter is [20,21]

D= |hi_y; = hyeql, 9)

where h;_; =|i — 1,i)i, i — 1| is a projector on the
SU(3) singlet spin state, |i — 1, i), at the bond (i — 1, i).
Note, in addition, that h;_;; is the isotropic SU(3)
Heisenberg Hamiltonian for the same bond. In the fermi-
onic language, |i — 1, i) has the following expression:

li—1,i)= \%(1 —¢l el —eleblo. 0
In terms of the original f fermions [see Egs. (2) and (3)],
this is a linear combination of an on-site singlet and a
nearest-neighbor singlet state that is illustrated at the
bottom of Fig. 1. Xian showed that D = 0.4216D,,, where
Dy is the value of D for a perfect dimerized state [20].
Replacing Eq. (10) in (9), it becomes clear that D is a BOI
order parameter. From a calculation of the charge Berry
phase [7] we obtain that the shift in polarization of the
two possible perfect dimerized states (see the bottom of
Fig. 1) relative to the MI is =e/6. Equation (10) shows that
the dimer formation is just a consequence of the charge-
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transfer instability between the two sublattices. In this
sense, this exact ground state unveils the fundamental role
of covalency for the stabilization of a bond ordered FE
state [3,11,12]. This is not only relevant to describe one
dimensional systems like tetrathiafulvalene- p-chloranil
[11,12] but is also helpful to gain a deeper understanding
of the FE transition of covalent perovskites [3].

Using another set of transformations that connect the
constrained fermions with SU(2) § = 1 spins [14],

_ (st t2 - _ t= o At

Sh = \/z(chKj +Kje), Sy = \/E(Kj ¢+ K,
Sj=ny =g, (1D
we can also write H(V = J/2 = 1) as an § = 1 biqua-
dratic Heisenberg model [15] with a single-ion anisot-

ropy:
Hr(V=J/2=10=~1> (8;-S;:))* +ED (552, (12)

where E = (A — U)/2. The strength of the anisotropy
term is determined by the difference A — U. If E is large
and positive (A > U), the spin system has an easy plane
anisotropy. Each site is most of the time in the $* =0
state, which means that the magnetization is perpendicu-
lar to the z axis. The ground state is nondegenerate (there
is no broken symmetry) and corresponds, in the original
language, to the band insulator. If E is large and negative
(U > A), the system has a strong easy axis anisotropy
and each site is in the S$¢ = *+1 state; i.e., the local
magnetization is parallel to the z axis. The ground state
is critical due to the antiferromagnetic correlations which
characterize the ML In between, for U = A, we have
demonstrated that there is a dimerized state which corre-
sponds to the BOL In terms of the original variables, the
strong quantum fluctuations that appear in the proximity
of the charge-transfer instability break the Z, inversion
symmetry by increasing the strength of one bond relative
to the next one.

The S = 1 version of Hg also provides a simple way of
studying the low-energy excitations of our exact bond
ordered state. The excitations of a dimerized spin 1/2
chain are spinons that carry a spin S = 1/2. In the
same way, the excitations of our S = 1 dimer state are
S =1 spinons. Each spinon is a soliton or antiphase
boundary for the Z, spin-dimer order parameter. The
two regions with opposite dimerization are separated by
a local § = 1 defect which is attached to the antiphase
boundary. In terms of the original language, the S, =0
spinons correspond to s = 0 solitons (charge excitations),
while the S, = *1 spinons are s = 1/2 solitons (spin and
charge excitations). From Egs. (2) and (12), the total
charge operator relative to half filling is Q =
> iea(S5)? = 3. cp(5%)%. For a general dimerized solution
with arbitrary E we have on each site (($5)%) =1 — a
with a = 1/3 for the exact solution at E = 0. When the
defect is localized on site j (the extension of the defect
does not affect the charge or spin of the excitations
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because they are topological invariants) we have
<(Sj)2) = (0, 1. Since the defect separates two regions
with opposite dimerization, it is easy to check that the
s = 0 solitons (antisolitons) have charge Q0 = =(1 — «a)
while the charge of the s = 1/2 solitons (antisolitons) is
Q = *a. For E = 0, both excitations are degenerate as a
consequence of the SU(3) invariance. These excitations
coincide with those obtained by Fabrizio et al [5],
who treat the bosonized ITHM as a phenomenological
Ginzburg-Landau energy functional. The magnitude a
is proportional to their jump in the charge field. In
particular, the s = 1/2 excitations interpolate between
an ordinary electron near the BI-BOI boundary (a = 1,
E > 0) and a spinon near the the BOI-MI boundary
(=0, E<O0).

In order to obtain an exact ground state of H;; we used
a value of J = 2¢ which is beyond the region allowed by
perturbation theory. Therefore, to connect our exact so-
lution with the THM, it is important to discuss the effect
of reducing the value of J. In addition, since most of the
previous papers do not include the V term, it is also
important to analyze its effect. A simple first order esti-
mation of the energy change for the three competing
phases, 8Eg; = 8U/2 + 1, 0Eyy = 2t1n2, and SEpg =
8U/6 — 5eyt/9, when J and V are reduced to zero, in-
dicates that the BOI survives if the difference U — A is
simultaneously increased to a value of order ¢. This con-
clusion is supported by different numerical results [7-9]
that report a bond ordered ground state of H(V = 0) for
the same region of parameters (U — A ~ rand U, A > ).
These observations suggest that our exact solution is
continuously connected with the BOI phase which was
numerically found in the IHM.

In summary, we have derived an effective low-energy
Hamiltonian, H.y, for the U, A > ¢ limit of the THM.
H ¢ is a minimal model to describe the BI to MI tran-
sition. Its simple form and the fact that it operates in a
reduced Hilbert space of local dimension D = 3 provide
a new framework to understand this transition. Using the
spin-particle transformations introduced in Refs. [15,16],
we mapped H. into an anisotropic SU(3) antiferromag-
netic Heisenberg model. By increasing the value of J
beyond the region allowed by perturbation theory, we
have shown that there is an exactly solvable SU(3) invari-
ant point for U = A and V = J/2 = t. In this way, we
demonstrated the existence of a bond ordered phase for
the transition regime between the BI and the MI. The
large value of the correlation length ¢ = 21.0728505...
explains the numerical difficulties for detecting this
phase in finite size systems. This exact solution provides
an answer to the question that was formulated in the
introduction: in the transition regime the system resolves
the competition between the BI and the MI by creating a
rather local resonance which can be visualized on each
dimer as a linear combination of a unit cell of the Bl and a
nearest-neighbor singlet that is related with the MI (see
Fig. 1). One of the most important physical consequences
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of this nontrivial phenomenon is the generation of a new
mechanism for ferroelectricity [3] that should be relevant
for ionic insulators which are close to a charge-transfer
instability. This result should motivate a careful reexami-
nation of the ferroelectricity in covalent materials.

In addition to the SU(3) mapping, we used a second
spin-particle transformation [14] that maps the con-
strained fermions into S = 1 SU(2) spins. In this new
language H.(V = J/2 = 1) is a biquadratic Heisenberg
model with a single-ion anisotropy along the z axis which
is proportional to A — U. The transitions among the BI,
BOI, and MI phases have been reinterpreted in the S = 1
language. We have also shown that the S = 1 version of
H.¢¢ provides the most natural frame to understand the
low-energy excitations of the BOL These excitations are
solitons that carry a fractional charge and spin s = 0 or
s = 1/2. The relevance of these results illustrates the
elegance and the potential of the generalized spin-
particle transformations introduced in Refs. [14-16].
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