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A scheme within density functional theory is proposed that provides a practical way to generalize to
unrestricted geometries the method applied with some success to layered geometries [H. Rydberg et al.,
Phys. Rev. Lett. 91, 126402 (2003)]. It includes van der Waals forces in a seamless fashion. By expansion
to second order in a carefully chosen quantity contained in the long-range part of the correlation
functional, the nonlocal correlations are expressed in terms of a density-density interaction formula. It
contains a relatively simple parametrized kernel, with parameters determined by the local density and
its gradient. The proposed functional is applied to rare gas and benzene dimers, where it is shown to give
a realistic description.
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Ec�n� � Ec�n� � Ec �n�; (2) gradient, the response is correct to the extent that S can be
Density functional theory (DFT) for molecules and
materials is widely applied with approximate local and
semilocal density functionals for the interaction effects.
For largely homogeneous systems, for example, simple
metals and semiconductors, the local-density approxima-
tion (LDA) for these effects is appropriate. For inhomo-
geneous systems, for example, transition metals, ionic
crystals, compound metals, surfaces, interfaces, and
some chemical systems, semilocal-density approxima-
tions, such as members of the family of generalized
gradient approximations (GGA), work well. Today DFT
describes cohesion, bonds, structures, and other proper-
ties very well for dense molecules and materials, as
shown by recent studies for both single molecules [1]
and dense solid-state [2] systems. However, sparse sys-
tems, including soft matter, van der Waals complexes, and
biomolecules, are at least as abundant. They have inter-
particle separations, for which nonlocal, long-ranged
interactions, such as van der Waals (vdW) forces, are
influential.

The aim of this Letter is to develop and apply a van der
Waals density functional (vdW-DF) for general geome-
tries to supplement the planar vdW-DF that we recently
applied with some success [3] to several layered mate-
rials. The simplest form for the nonlocal correlation-
energy part to such a functional is

Enl
c �

1

2

Z
d3r d3r0 n� ~rr���~rr; ~rr 0�n�~rr 0�; (1)

where �� ~rr; ~rr 0� is some given, general function depending
on ~rr� ~rr0 and the densities n in the vicinity of ~rr and ~rr0.
It is approximately derived here and applied to some
key cases, with results that give promise for broader
applications.

We start with the same approximation scheme used for
layered systems [3,4], and divide the correlation energy
into two pieces,

0 nl
0031-9007=04=92(24)=246401(4)$22.50
which are treated in different approximations. In particu-
lar, as discussed in Ref. [4], we treat the second term in
the full potential approximation, which is exact at long
distances between separated fragments, and therefore
adopt Eq. (25) of Ref. [4]:

Enl
c �

Z 1

0

du
2	

tr�ln�1� V ~��� � ln��; (3)

where ~�� is the density response to a fully self-consistent
potential with long-range, interfragment spectator [5]
contributions omitted [4]. V is the interelectronic
Coulomb interaction, � an appropriately approximated
dielectric function, and u the imaginary frequency.
While Eq. (3) is taken to be the definition of Enl

c , we
will show that Eq. (1) can be obtained with suitable
approximations. The first term E0

c , defined by Eqs. (2)
and (3), is also nonlocal; however, with the long-range
vdW terms treated separately, it seems a reasonable ap-
proximation to treat E0

c in the LDA, and this is what we
do. There is no double counting, because for a uniform
system 1� V ~�� � �, which implies that the LDA for Enl

c

vanishes. This is also the key to a seamless theory.
For layered systems, the scheme was made tractable by

the use of the lateral average of the densities to calculate
the interplanar contribution from Eq. (3) [6]. For general
geometries, we make the scheme tractable by expanding
Eq. (3) to second order in S 
 1� ��1, obtaining

Enl
c �

Z 1

0

du
4	

tr

�
S2 �

�
rS  rV

4	e2

�
2
�
: (4)

This vanishes in the uniform limit as it must.
This S expansion replaces the exact solution to the

Poisson equation for all possible external potentials,
which was carried out for the planar functional [6]. It
gives the correct asymptotic forms for fragments, parallel
sheets, and parallel surfaces. For fields parallel to the
density gradient, it includes the correct differential local
field correction. For fields perpendicular to the density
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treated as a small quantity, as it can in good parts of the
frequency and density integration range. In many-body
perturbation theory, the S expansion corresponds to a well
specified (infinite) set of terms, which will allow future
corrections in cases where they should prove necessary.
This approximation to the electrodynamics (proposed
earlier [7,8]) was used to calculate the C6 coefficient
successfully over a large set of atomic and molecular
pairs [7,9], with some excerpts in the second data column
of Table I. Comparison with the third data column, calcu-
lated with exact electrodynamics, shows that we may
expect an error on the level of 20% to be introduced by
the S expansion. However, the C2 coefficient for parallel
surfaces is somewhat less accurately predicted than this,
and the effect of possible anisotropic atomic polarizabil-
ities on C6 is not included at all. Nevertheless, the func-
tional apparently gives exemplary results for layered
systems, for example, improving the results of the planar
functional on graphite [3].

In order to evaluate Eq. (4), we need a simple approxi-
mation for S, as a functional of the density. This choice is
constrained by a number of exact relationships. In a
plane-wave representation, S~qq; ~qq0 , one has the requirements
(i) S~qq; ~qq0 �!� ! ��4	e2=m!2�n~qq� ~qq0 at large frequencies
(the f-sum rule), where n ~kk is the Fourier transform of
the density; (ii)

R
1
�1 du S~qq; ~qq�iu� ! 8	2Ne2=q2 for large

q, where N is the number of electrons, to reproduce the
exactly known self-correlation; (iii) S~qq; ~qq0 � S� ~qq0;� ~qq
for time reversal invariance; (iv) a finite S~qq; ~qq0 �!� for
vanishing q or q0 at all nonzero values of !, to give an
exchange-correlation hole with the correct volume
(charge conservation).

An approximate S inspired by the plasmon-pole model
successfully applied earlier [6] takes S~qq; ~qq0 �

1
2 �
~SS~qq; ~qq0 �

~SS� ~qq0;� ~qq�, where

~SS ~qq; ~qq0 �
Z
d3re�i� ~qq� ~qq0� ~rr 4	n� ~rr�e2=m

�!�!q�~rr����!�!q0 � ~rr��
: (5)

We will take !q� ~rr� to be a function of the local density at
point ~rr and its gradient. The above S satisfies all the
constraints provided !q ! q2=2m for large q.
TABLE I. C6 values for dimers (Rydberg atomic units).
Present: from Eq. (17). Similar: calculations from Ref. [7]
using the same electrodynamics approximation. Unified: cal-
culations from Ref. [10] using self-consistent electrodynamics.
Reference: sources cited in Ref. [10].

Dimer Present Similar Unified Reference

He 4.8 4 2.58 2.92
Ne 14.6 12 15.0 13.8
Ar 124 126 143 134
Kr 238 245 291 266
Xe 516 520 663 597
Mg 1598 1513 1230 1240
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To facilitate the numerical evaluation, we choose an !q
which depends on a single length scale l, and switches
from its small-q form !q � 1=2ml2 to its large-q form
(above) when q� 1=l. We make an arbitrary choice for
the switching function letting �1� e��ql�2�!q � q2=2m.
The quantity l will be a function of position, and for
convenience later we define q20 � �=l2, where � � 4	=9.
Hence, letting h�y� � 1� e��y2 , we may write

!q�~rr� �
q2

2m
1

h�q=q0�~rr��
: (6)

It would, of course, be preferable to use a form with a
second length scale, as would be provided by a linear
term / qvF in the !q dispersion [3,4,6], but this source of
error is mitigated by a continuously variable choice of q0
based on the density. We make this choice so the ex-
change-correlation energy density "0xc�~rr� defined by

E0
xc �

Z
d3r "0xc� ~rr�n�~rr� (7)

produced by this choice of q0� ~rr� corresponds to that of a
full calculation.

The expression for E0
xc corresponding to the approxi-

mation (3) for Enl
c is simply

E0
xc �

Z 1

0

du
2	

tr�ln�� � Eself �
Z 1

0

du
2	

tr S� Eself ; (8)

where Eself subtracts off the internal Coulomb self-energy
of each electron. As was done previously, we expand to
lowest order in S in the second equality. Substituting for S
using (5), integrating over u � �i!, and using Eq. (7)
gives

"0xc�~rr� �
	e2

m

Z d3q

�2	�3

�
1

!q� ~rr�
�

2m

q2

�
; (9)

where the second term in the brackets is the self-energy
subtraction written explicitly. Upon substitution from (6),
one finds

"0xc� ~rr� �
e2q0�~rr�

	

Z 1

0
dy�h�y� � 1� � �

3e2

4	
q0�~rr�: (10)

Approximations for "xc are conveniently expressed
as their ratio to the LDA exchange value "LDAx �
�3e2kF=4	, where k3F � 3	2n. Equation (10) then im-
plies that the local value of the parameter q0 is simply
given by the local value of kF modulated by an easily
understood energy ratio; that is,

q0� ~rr� �
"0xc�~rr�

"LDAx � ~rr�
kF�~rr�: (11)

Equation (11) is used to determine the q0 value to be
used in Eq. (6), continuously as a function of position. For
this purpose we use LDA with gradient corrections,

"0xc � "LDAxc � "LDAx

�
Zab

9

�
rn
2kFn

�
2
�
; (12)
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FIG. 1. The kernel � in Eq. (1) as a function of the dimen-
sionless D parameter for several values of the asymmetry
parameter ), as defined in the text.
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FIG. 2. Calculated interaction energy between two Ar atoms
(dashed curves) and between two Kr atoms (solid curves). The
experimental equilibrium data [16] are shown for comparison
with the full vdW-DF, and the GGA predictions in the revPBE
flavor are also shown.
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where Zab � �0:8491. This is the contribution labeled
‘‘screened exchange’’ in the table in the review of
Ref. [11], where the relationship to the original work of
various authors, who obtained this quantity from first
principles, is discussed. The remaining contribution Zc,
labeled ‘‘fluctuation’’ in Ref. [11], is part of Enl

c , and,
hence, inappropriate to include as part of E0

xc. It comes
from a term in perturbation theory that gives a long-range
vdW-like interaction if taken at long range instead of in
an expansion in gradients [12].

Writing Eq. (4) in a plane-wave representation gives

Enl
xc �

Z 1

0

du
4	

X
~qq; ~qq0

�1� �q̂q  q̂q0�2�S~qq; ~qq0S~qq0; ~qq: (13)

This may be straightforwardly, but tediously, expressed in
the form of Eq. (1), where the kernel � is given by

��~rr; ~rr0� �
2me4

	2

Z 1

0
a2 da

Z 1

0
b2 dbW�a; b�

� T�$�a�; $�b�; $0�a�; $0�b��; (14)

where

T�w;x;y;z��
1

2

�
1

w�x
�

1

y�z

��
1

�w�y��x�z�

�
1

�w�z��y�x�

�
; (15)

and

W�a; b� � 2��3� a2�b cosb sina� �3� b2�a cosa sinb

� �a2 � b2 � 3� sina sinb

� 3ab cosa cosb�=a3b3: (16)

The quantities $ and $0 are given by $�y� � y2=2h�y=d�
and $0�y� � y2=2h�y=d0�, with d � j ~rr� ~rr0jq0�~rr� and d0 �
j ~rr� ~rr0jq0� ~rr

0�, where q0 is given by Eq. (11). The kernel �
thus depends on ~rr and ~rr0 only through d and d0, so that �
can be tabulated in advance in terms of these two varia-
bles, or better yet in terms of the sum and difference
variables D and ) defined by d � D�1� )� and d0 �
D�1� )�. Then 0 � D<1 and 0 � j)j< 1. For large
d and d0, the asymptotic form is

� ! �
C

d2d02�d2 � d02�
; (17)

where C � 12�4	=9�3me4. In Fig. 1, we show a plot of
4	D2� vs D for several values of ). The integral of the
) � 0 curve vanishes as it must.

The numerical work uses Eq. (2) for the correlation
functional coupled with the Zhang-Yang revPBE [13]
exchange functional. This choice is motivated by the
work of Wu et al. [14], which pointed out that a more
standard GGA predicts substantial binding in rare gas
dimers from exchange alone, a feature absent for exact
Hartree-Fock (HF) exchange. We found [4] that revPBE
exchange does not have this property, so by using it we
246401-3
ensure that vdW binding, a correlation effect, actually
comes from the correlation term in our approximation
scheme [15].

In Table I, our calculated values for the coefficient C6

in the asymptotic interaction �C6=R
6 between the ele-

ments of several dimers are compared with those from
previous related calculations as well as reference values,
which also have some uncertainty.

Figure 2 shows the calculated binding-energy curves
as functions of separation for Ar and Kr dimers. The
comparison with experimental values for the binding
energy and distance [16] illustrate the promise of vdW-
DF for such systems. The binding-energy curves for a
benzene dimer in the atop-parallel configuration in
246401-3
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FIG. 3. Interaction energy between two benzene molecules in
the atop-parallel configuration as predicted by the exchange-
only part of two of the several GGA functionals tested. The full
Hartree-Fock results [17] are shown for comparison.
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Fig. 3 illustrate the importance of choosing the right GGA
flavor, i.e., revPBE [13], to avoid erroneous attraction in
exchange-only accounts, as discussed in Refs. [4,14].
Figure 4 illustrates the relative agreement between mod-
ern wave function based calculations [17] and our vdW-
DF method, and the importance of not using the GGA
alone. We have also studied the benzene dimer in the
slipped-parallel and T-shaped geometries. Also, here
our results compare well with those of wave function
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FIG. 4. Full interaction energy between two benzene mole-
cules in the atop-parallel configuration using the vdW-DF func-
tional. For comparison, we show recent results [17] using
coupled-cluster [CCSD(T)] and perturbation-theoretic (MP2)
methods, as well as the prediction of two flavors of GGA. Our
vdW-DF would have given an equilibrium separation closer to
those from the wave function calculations, if exact HF ex-
change (see Fig. 3) had been used instead of revPBE exchange.
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based calculations. Preliminary tests on the water dimer
also give similar qualitatively good results.

The above moderate successes of the vdW-DF proposed
here suggest that its use, along with future improvements,
may be a way to proceed for calculating properties of
vdW bound molecules that are too large for wave function
based methods to be useful.
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