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Crack propagation is studied numerically using a continuum phase-field approach to mode III brittle
fracture. The results shed light on the physics that controls the speed of accelerating cracks and the
characteristic branching instability at a fraction of the wave speed.
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The quest for a fundamental understanding of dynamic
brittle fracture has been an ongoing challenge. The tradi-
tional continuum theory of brittle fracture consists of
solving the equations of linear elasticity with boundary
conditions on the moving fracture surfaces up to the crack
tip [1]. The solutions have stress fields that diverge near
the tip, representing a finite energy flow rate to the tip.
The crack propagation speed v is assumed to be uniquely
determined by this energy flow rate. All the nonlinear
physics of failure inside a microscopic region around
the tip—the so-called process zone—is buried in a phe-
nomenological function that relates the fracture energy I'
of the material (energy to advance the tip per unit length
of crack front and per unit of crack extension) and v.

The main difficulty in any experimental test of this
theory is that the energy flux to the tip cannot be mea-
sured directly but needs to be inferred from a time-
dependent solution of linear elasticity for accelerating
cracks. Using an approximate solution, Sharon and
Fineberg found that a unique I'(v) curve describes cracks
accelerated under different loads, thereby validating the
continuum theory [2]. Kessler and Levine obtained the
same result in lattice simulations [3] using an exact
solution of Eshelby [4] for accelerating cracks. These
authors, however, found that the experimental data of
Ref. [2] do not collapse on a single I'(v) curve when
interpreted using Eshelby’s solution.

Also of long-standing interest is a generic dynamic
instability that limits the speed of fast moving cracks in
both experiments [2,5,6] and molecular dynamic simula-
tions [7]. The fact that microscopically very different
amorphous materials [such as glass and poly(methyl
methacrylate)] exhibit strikingly similar branching in-
stabilities [2] strongly suggests that a continuum theory
may be appropriate for understanding this phenomenon.
Devising such a theory, however, has proven to be diffi-
cult. Cohesive zone theories modify the boundary con-
ditions on the stress field near the tip to take into account
the short-scale force between crack surfaces. Langer and
Lobkovsky [8], however, have shown that these models
are unsuitable for stability calculations since the results
depend singularly on the details of the cohesive zone. In
addition, intrinsically discrete branching instabilities in
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lattice models [9,10] seem unlikely to bear relevance to
experiments in amorphous materials.

In this Letter, we study dynamic brittle fracture using a
recently developed continuum phase-field approach for
mode III cracks [11]. This approach has the chief advan-
tage that it incorporates both the short-scale physics of
failure and the macroscopic linear elasticity within a self-
consistent set of coupled nonlinear partial differential
equations that can be solved numerically. An earlier study
of this model did not show a branching instability be-
cause the simulations were restricted to very small sys-
tems, not much larger than the process zone size [11].
Here, we overcome the intrinsic stiffness of the phase-
field equations, which allows us to carry out simulations
in system sizes an order of magnitude larger. These simu-
lations reveal that the characteristic branching instability
at a fraction of the wave speed is a robust feature of the
phase-field model. In addition, we obtain system-size
independent results that can be meaningfully compared
to results from the fracture community.

The basic variables of the model [11] are the scalar
displacement u(x, y) perpendicular to the x-y plane of
mass points from their original positions, and the phase
field, ¢(x, y), which describes the state of the material.
The unbroken solid, which behaves purely elastically,
corresponds to ¢ = 1, whereas the fully broken material
that cannot support stress corresponds to ¢ = 0. The total
energy (kinetic plus elastic) of the system per unit length
of the crack front is

E=[w@gwmugﬁmuwﬂ@
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where p is the density, € = Vu is the strain, f(P) is a
double-well potential with minima at ¢ = 1 and ¢ = 0,
M is the elastic shear modulus, and €, is the critical strain
magnitude such that the unbroken (broken) state is ener-
getically favored for |€] < €. (|é| > €,). The function
g(@) is a monotonously increasing function of ¢ with
limits g(0) = 0 and g(1) = 1, which controls the soften-
ing of the elastic energy at large strain.
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Taking the first variations of the energy with respect to
the strain and to ¢, we obtain the stress, & = SE/ €, and
the equations of motion,

X - —§—§= K2 — hf() — ug!()(1Ful? — &),
(2a)

pPu=V-é=puV-[g(¢)Vul (2b)

where f' = df /d¢ and g’ = df /d¢. Energy is dissipated
in the process zone around the crack tip where ¢ varies
rapidly in space and time. Equation (2a) implies that the
size of the process zone is & = \/«k/ue€2, and the charac-
teristic time of energy dissipation in this zone is 7 =
1/(xpme€2). Furthermore, by rescaling lengths by &, time
by &/c, where ¢ = /u/p is the shear wave speed, and u
by £€., we find that the crack propagation in Egs. (2) is
controlled by only two dimensionless parameters: 6 =
h/(we?) and B = c7/&. The first determines the dimen-
sionless surface energy [11] ¥ = y/(ne2é) = [Ldo[1 —
g(#) + 28f(4)]'/?, which is order unity for § = 0. With
f(#) = 164°(1 — ¢)* and g(¢) = 4¢> —3¢*, ¥ ap-
proximately doubles when 6 increases from O to 2. The
second parameter B controls the importance of inertia
relative to dissipation in the process zone. If 7>
&/c(B > 1), then bond breaking is sluggish and the dis-
placement field relaxes rapidly to a quasistatic configura-
tion around the process zone. Therefore, the crack
propagation speed is limited by the rate of dissipation
in the process zone. In the opposite limit 7 << £/c(8 <«
1), bond breaking is quasi-instantaneous and the rate of
crack propagation is limited by the inertial dynamics of
the displacement field. The total energy is in fact con-
served in the extreme inertia-dominated limit 8 — O [see
Eq. (4) below] where dissipation plays no role.

We study fracture numerically in a strip of width 2W
with a fixed displacement u(x, =W) = *A at the strip
edges. The stored elastic energy per unit area ahead of the
crack tipis G = wA?/W, and the Griffith’s threshold load
for a semi-infinite crack is G, = 27y. The phase-field
equations are made extremely stiff by the localization
of strain within a narrow region whose width vanishes in
the large strip limit W/& — oo [11]. To overcome this
stiffness, we discretize the energy density on a square
lattice:

§~ Zg(atuu)z +27’;2[(¢i+lj — 6+ (i1 — )]
LJ

M8t 8i+1j
+hfij+§<W(ui+lj_uij)2
8ij+1 1 8&ij
"'W(”iﬁl _”ij)z_gijeg) (3)

where the subscripts i and j refer to position (x = ia, y =
ja) on the lattice and we have defined f;; = f(¢;;)
and g;; = g(¢;;). Next, we obtain the equations of motion
variationally from this energy, a’x ™ '9,¢;; = —0E/d¢;;

245510-2

and a’pdtu;; = —pwdE/Ju;;, which reduce to Eqs. (2a)
and (2b), respectively, in the continuum limit
a — 0. This approach has the chief advantage that the
lattice spacing needs only to be chosen small enough to
resolve the smooth spatial variation of the two coupled
fields ¢ and u in the process zone. The discontinuity of
the displacement field on the lattice scale behind the crack
tip does not influence the crack dynamics, except through
multiple reflections of high-frequency waves at large
time. This radiation is easily suppressed by damping
waves at boundaries or adding a small Kelvin viscosity
to Eq. (2b), with no qualitative change of the results
presented here. We have verified that the important ob-
servables converge quickly in the limit of the vanishing
lattice spacing and that we operate in the regime where
these observables differ by at most 15% from their con-
tinuum limits for a in the range 0.3 to 0.4¢.

To study unsteady crack propagation as in previous
experiments [2] and lattice simulations [3], we first com-
pute stationary cracks of different initial lengths € and
loads G. These solutions are found by solving Eq. (2b)
without inertia with a Gauss-Seidel iteration scheme and
by relaxing ¢ using Eq. (2a). We then simulate the full
equations of motion with inertia, with these solutions as
initial conditions. To study steady-state features of crack
propagation independent of initial conditions, we run
long simulations in strips that are effectively infinite
along the propagation direction. To keep the computations
tractable, we periodically translate the fields u and ¢ by
one lattice spacing such that the crack tip remains in the
middle of a strip of length much larger than W. We have
checked that the results of these “treadmill” simulations
are independent of boundary effects.

To compute the fracture energy, we equate vI" with
the expression for the energy flow rate to the tip
of mode III cracks [4] ol'= [.dC[upid,u+
vn,d,(pu*/2 + wl€|*/2)], where C is a closed circuit
around the moving tip and 7 is the outward normal to
C. More precisely, we calculate the time rate of change of
the total kinetic plus elastic energy in the region where ¢
is larger than a threshold value ¢, close to unity. This
quantity is precisely the energy flow rate into the process
zone defined as the region where ¢ < ¢,.

Plots of tip speed versus tip position for cracks accel-
erating from rest are shown in Fig. 1 for the inertia-
dominated regime B8 = 1. Corresponding plots of I' ver-
sus v are shown in Fig. 2. The initial crack acceleration
increases with load, and the tip splits into two symmetric
branches above a critical onset load G, Cracks for
smaller loads that do not split, or split only transiently
for G ~ Gn» reach a steady-state velocity equal to the
steady-state velocity calculated on the treadmill (solid
line in Fig. 2). The equality I' = G in steady state is a
self-consistency check of our method of calculating I'.

From the long simulations on the treadmill, three basic
regimes of crack propagation can be distinguished: a
stable steady-state regime for small loads, where v is
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FIG. 1. Crack speed x(r) versus tip position x(¢) for accelerat-

ing cracks with different initial lengths, where x(¢) is the point
of the ¢ = 1/2 contour with the largestx. 8 =1, =0, a =
0.3¢, and W = 30¢. The speed can become negative when
branches retreat transiently.

constant in time and the crack is rectilinear; an asym-
metric tip-splitting (“‘snake”) mode for intermediate
loads, where v fluctuates in time around some average
value while the crack follows a sinusoidal trajectory; and
a chaotic tip-splitting regime with well-developed
branches for large loads. Examples of these regimes are
shown in Fig. 3. The steady-state velocity v saturates at
some value v,. Rectilinear cracks cannot propagate faster
than v.. These results suggest that off-axis branching in
the present model is due to the absence of steady-state
crack solutions above a critical speed. The dependence of
v, on the parameters of the model is shown in Fig. 4. The
maximum crack speed is well defined in the inertia-
dominated limit 8 — 0. It grows monotonically with
the scaled surface energy ¥ and has a minimum at § =
0 of v. = 0.41c. At this speed, the linear elastic field in
the unbroken material around the crack tip is quasi-
isotropic [12]. We therefore conjecture, along the lines
of Gao [13], that tip blunting, which leads to velocity
saturation and ultimately to tip splitting, is due to the
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FIG. 2. Fracture energy versus tip speed for the accelerating
cracks of Fig. 1. The solid line corresponds to steady-state
propagation with I' = G by energy conservation. The ¢ =
1/2 contours in the inset are spaced in time by 10£/c and
correspond to the large solid triangles.
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FIG. 3. Contours of ¢ = 1/2 separated in time by 10&/c.
Plots are on the same scale for a strip width W = 30¢, B8 = 2,
and 6 = 0. (a) Transient branching for G = 1.56G.. (b) Weak
periodic branching (the snake) for G = 1.86G,. (c) Chaotic
branching for G = 2.90G..

relativistic contraction of stress fields in the nonlinear
process zone where the sound speed is small due to the
softening of the material.

Our results are in reasonably good agreement with the
analytical calculation of Adda-Bedia [14], which predicts
that tip splitting is energetically possible for mode III
fracture for speeds above 0.39¢ with an angle between
symmetric branches of 80°. For comparison, the smallest
value of v, is about 0.41c in the 8 — 0 limit of the
simulations. Furthermore, the branching angle is close
to 70° near the onset of branching and decreases for
larger loads, as shown in Fig. 5. It should be noted,
however, that v. depends on the surface energy ¥ in the
simulations, as shown in the inset of Fig. 4, whereas it is
independent of the latter in the energetic calculation of
Ref. [14], which only considers the energy flow to the tip
within the framework of macroscopic linear elasticity.
This difference shows that the cohesive forces on the scale
of the process zone also influences branching.

It is important to emphasize that the limiting speed of
crack propagation and the branching angle are both inde-
pendent of system size in our simulations. In addition,
well-developed branches follow a smooth curved path, as
shown in the inset of Fig. 5 and as seen experimentally
[2]. Interestingly, even though our simulations are for
mode III and the experiments are for mode I, branch

T T T
£+° 0.55F '
04 —%* X R
o® 'Uc(ﬂ= 0) =
v, 03F 8* c o -
- o]
oft 0.4E | | -
0.2 °x .05 5 15 A
© §=0.03 )
+ §=063 N
0L % 9=138 ]
e 5=200 . .
0 5 10 15 20
B

FIG. 4. Limiting speed of crack propagation v, versus S
for different values of &. Inset: v, in the inertia-dominated
(B — 0) limit versus §.
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FIG. 5. Angle between symmetric branches as a function of

load for cracks accelerated from rest in different strip widths.
The inset shows an example of branching (¢ = 1/2 contour)
for W = 75¢. The results are independent of system size for the
two largest strip widths.

shapes are well fit by a power law of the form y ~ x”, with
v = 2/3 in both experiments and simulations for y > £.
The system size, however, can influence the dynamics at
larger time after the onset of the instability through the
coupling of the tip dynamics to reflected waves. One clear
example is the snakelike oscillatory solution of Fig. 3(b)
for W = 30£, where the tip oscillates with a period4 W/c
close to the first harmonic standing wave in the strip. This
oscillation is on the scale of the process zone and would
not be observable experimentally. In contrast, for larger
loads and strips widths, the mean spacing between well-
developed branches in the chaotic branching regime ap-
pears to be more weakly dependent on system size.

To further interpret our results, let us first derive an
analytic expression for the speed of steady-state cracks
close to the Griffith threshold. Energy balance implies
that the stored elastic energy ahead of the crack in excess
of 2y must be dissipated in the process zone, or

WG — G) = —dE/dt = (1/y) f dxdy(9 /017 (4)

where the second equality follows from Eqgs. (2) with no
energy flux through the boundaries. In a coordinate sys-
tem (x' =x—vt, y' =y) translating with the tip,
d¢p/ot = —v d¢/dx'. Thus the steady-state velocity of
rectilinear crack propagation is

v/e =29(G/G. — 1)/(BI), (&)

where I = [dx'dy'(9¢/0x')? is a dimensionless integral
factor of order unity that depends on the profile of ¢ for a
stationary crack at G = G,. This prediction is consistent
with the simulation results that show a steeper increase of
velocity with a load for smaller 8.

The fact that the I' — v plots for different accelerating
cracks in Fig. 2 do not superimpose on the steady-state
curve clearly shows that v is not uniquely determined by
the energy flow rate to the tip. This cannot be explained by
the modification of this energy flow rate due to wave
reflections [15] since the lack of data collapse is already
present for times shorter than the wave reflection time. In
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our model, accelerating cracks require more energy per
unit length of advance than steadily propagating cracks.
This extra energy is reversibly stored in the process zone
to be either consumed by branching or radiated away later.
This effect is exacerbated for large loads and causes the
crack to decelerate before branching. This deceleration is
marked by the overshoot of the velocity versus the tip
position (Fig. 1), which has been observed for very large
accelerations in brittle fracture of glass [2].

To estimate crudely the importance of acceleration, let
us assume that its effect becomes negligible when the
change of the crack speed over a distance ~¢ is small
compared to the wave speed, or £d(v/c)/dx < 1. This
inequality can also be written as d(v/c)/d(G/G¢) X
£d(G/Ge)/dx < 1. Equation (5) implies that d(v/c)/
d(G/G¢) ~ /B, whereas £d(G/Ge)/dx ~ &/W. The
fact that I' — v plots do not collapse on a single curve
in simulations with 8 and G/G,. of order unity, and
W/& = 100, shows that acceleration effects persist for
much larger system sizes than this estimate predicts.
This breakdown of the continuum theory of brittle frac-
ture in the present model remains to be understood.

This study shows that the phase-field method is a
promising approach to investigate instabilities in brittle
fracture. The extension of this model to other modes of
fracture and higher dimensions is in principle straightfor-
ward by modifying the energy functional [Eq. (1)]. A
much harder task for the future, however, is the incorpo-
ration of more realistic mechanisms of failure in order to
make quantitative predictions for specific materials.
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