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We consider some basic principles of fluid-induced lubrication at soft interfaces. In particular, we
quantify how a soft substrate changes the geometry of and the forces between surfaces sliding past each
other. By considering the model problem of a symmetric nonconforming contact moving tangentially to
a thin elastic layer, we determine the normal force in the small and large deflection limit, and show that
there is an optimal combination of material and geometric properties which maximizes the normal
force. Our results can be generalized to a variety of other geometries which show the same qualitative
behavior. Thus, they are relevant in the elastohydrodynamic lubrication of soft elastic and poroelastic
gels and shells, and in the context of biolubrication in cartilaginous joints.
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 R, and W�X; 0� � W�X;H� � 0:
(6)
Lubrication between two contacting surfaces serves
to prevent adhesion and wear, and to reduce friction [1].
The presence of an intercalating ‘‘lubricating’’ fluid aids
both, but gives rise to large hydrodynamic pressures
in the narrow gap separating the surfaces and can thus
lead to deformations of the surfaces themselves. For
stiff materials such as metals, the pressure required for
noticeable deformations is very large (�1 GPa) and under
these conditions the lubricating fluid will exhibit non-
Newtonian properties [2]. However, if these surfaces are
soft, as in the case of gels and thin shells, elastohydrody-
namic effects can become important when the fluid is still
Newtonian since the pressure required to displace the
surface is appreciably less. This type of situation is also
common in mammalian joints where the synovial fluid
serves as the lubricant between the soft thin cartilaginous
layers which coat the much stiffer bones. Motivated by
these observations, in this Letter we consider the cou-
pling between fluid flow and elastic deformation in con-
fined geometries that are common in lubrication
problems.

As a prelude to our discussion, we consider the steady
motion of a cylinder of radius R completely immersed in
fluid and moving with a velocity V, with its center at
height h0 � R above a rigid surface (see Fig. 1). The
dynamics of the fluid of viscosity �, and density � are
described using the Navier-Stokes equations:

��@tv� v � rv� � �r2v�rp; (1)

r � v � 0; (2)

where v is the 2D velocity field �u; w� and p is the
pressure. Comparing the ratio between the inertial and
viscous forces in the narrow gap having a contact length
l�

���������
Rh0

p
[3], we find the gap Reynolds number Reg �

�V2=l �
�Vh3=20 
 �VR � Re, the nominal Reynolds num-
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we can safely neglect the inertial terms and use the
Stokes’ equations (and the lubrication approximation
thereof [4]) to describe the hydrodynamics. The temporal
reversibility associated with the Stokes equations and the
symmetry of the parabolic contact leads to the conclusion
that there can be no normal force due to the horizontal
motion of the cylinder. However, if there is a thin soft
elastic layer on either the cylinder or the wall, the defor-
mation of the layer breaks the contact symmetry and
leads to a normal force. This then leads to an enhanced
physical separation and a reduced shear so that it may be a
likely cause for the low wear properties of cartilaginous
joints.

Continuing our analysis in the context of a cylin-
der moving along a planar wall, we take the x direction
to be parallel to the wall in the direction of motion of
the cylinder and the z direction to be perpendicular to the
wall; p is the fluid pressure; h is the distance between the
solid surfaces. Guided by lubrication theory [4], we use
the following scalings:

x �
�����������
2h0R

p
X; z � h0Z; p �

������
2R

p
�V

h3=20

P;

h � h0H; u � VU; w �
V

�����
h0

p

������
2R

p W;

(3)

to reduce (1) and (2) to

@XP � @ZZU; @ZP � 0; (4)

@XU� @ZW � 0: (5)

We consider steady motion in the reference frame of the
cylinder, so that the boundary conditions are

U�X; 0� � �1; U�X;H� � 0;
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FIG. 1. A rigid cylinder moves at a velocity V a distance h0
above a rigid substrate coated with an elastic layer of thickness
Hl. Hl; h0 


���������
h0R

p
� l. We illustrate the steps of the pertur-

bation analysis. (b) An antisymmetric pressure distribution
pushes down on the gel in front of and pulls the gel up be-
hind the cylinder. (c) The fore-aft gap profile symmetry is
broken. (d) The new pressure field produces a normal force.
(a) and (b) correspond to an undeformed substrate, while (c)
and (d) correspond to solutions of (7), (8), and (12) for
� � ��h�=h0 � 10.
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Integrating (4)–(6) leads to the dimensionless Reynolds
equation [5]:

0 � @X�6H �H3@XP�: (7)

Since the gap pressure is much larger than the ambient
pressure, we may approximate the boundary conditions
on the pressure field as

P�1� � P��1� � 0: (8)

Next, we consider the deformation of the elastic layer of
thickness Hl that rests on a rigid support. Balance of
stresses in the solid leads to

r � � � 0; (9)

with the stress given by

� � G�ru�ruT� � �r � uI; (10)

where u � �ux; uz� is the displacement field and G and �
are the Lamé constants for the solid, which is assumed to
be isotropic and linearly elastic. To calculate the increase
in gap thicknessH�x�, we use the analog of the lubrication
approximation in the solid layer [6]. The length scale in
the z direction isHl and the length scale in the x direction
is

���������
h0R

p
. We take the thickness of the solid layer to be

small compared to the thickness of the contact zone,���������
h0R

p
� Hl, and consider a compressible elastic material,

G� �, to find the vertical force balance: @zzuz � 0. The
boundary condition at the solid-fluid interface is � � n �
�pn, so that �2G� ��@zuz�x; 0� � �p�x�. Using the zero
displacement condition at the interface between the soft
and rigid solid, uz�x;�Hl� � 0 leads to the following
expression for the displacement of the surface:

uz�x; 0� � �
Hlp�x�
2G� �

: (11)

The dimensionless version of the gap thickness, h �
h0�1�

x2
2h0R

�
uz�x;0�
h0

�, is

H�X� � 1� X2 � �P�X�; (12)

where � � �h=h0 � �
������
2R

p
Hl�V�=
h

5=2
0 �2G� ��� is the

dimensionless parameter governing the size of the de-
flection. Inspired by the some recent experiments [7]
in a similar geometry, we consider a cylinder of radius
R � 10 cm coated with a rubber layer (Hl � 0:1 cm,
G � 1 MPa) moving through water (� � 1 mPa s, V �
1 cm=s, h0 � 10�3 cm). Then � � 10�2 
 1, so that we
may use the perturbation expansion P � P0 � �P1,
where P0 is the antisymmetric pressure distribution
corresponding to an undeformed layer, and P1 is the
symmetric pressure perturbation induced by elastic de-
formation. Substituting (12) into (7) leads to the following
equations for P0; P1:

�0:@X
6�1� X2� � �1� X2�3@XP0� � 0; (13)
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�1:@X
6P0 � 3�1� X2�2P0@XP0 � �1� X2�3@XP1� � 0;

(14)

subject to the boundary conditions P0�1� � P0��1� �
P1�1� � P1��1� � 0. Solving (13) and (14) yields

P �
2X

�1� X2�2
� �

3�3� 5X2�

5�1� X2�5
: (15)

Then the normal force is

F �
Z 1

�1
PdX �

3�
8
�; (16)

In dimensional terms, F � 
�3
���
2

p
��=4�f��2V2HlR

3=2�=

h7=20 �2G� ���g; whose scaling matches the result re-
ported in [8], but with a different prefactor. When � is
not small, we solve (7), (8), and (12) numerically. Figure 2
shows that as � increases the mean gap increases and its
profile becomes asymmetric, resembling the profile of a
rigid slider bearing, a configuration well known to gen-
erate lift forces [4]. In addition, this increase in the gap
size causes the peak pressure to decrease since p�
��VR1=2�=h3=20 . These two competing effects produce a
maximum lift force when � � 2:06.

The physical basis for the previous arguments can be
more easily understood using scaling and therefore allows
us to generalize these results to a variety of configurations
involving lubrication of soft contacts (Fig. 3; Table I).
Balancing the pressure gradient in the gap with the vis-
cous stresses yields

p
l
�
�V

h2
! p�

�VR1=2

h3=2
: (17)

Substituting h � h0 � �h, with �h
 h0, we find that
the lubrication pressure is
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FIG. 3. Schematic diagrams of two configurations considered
on the level of scaling. (a) A soft solid coats a rigid solid where
Hl �

���������
h0R

p
, i.e., the layer thickness is larger than the length

scale of the hydrodynamic interaction. (b) The cylinder is
replaced by a cylindrical shell.

FIG. 2. (a) The dimensionless pressure distribution, P, for
several values of �, a measure of the deflection of the elastic
layer compared to the initial separation. (b) The dimensionless
gap thickness profile, H � 1� X2 � �P. The gap thickness
and asymmetry increase with �, while the maximum value of
the pressure decreases. (c) For small � asymptotic analysis
predicts a dimensionless lift force F � 
�3��=8��, which
matches the numerical solution. (d) F has a maximum at � �
2:06 as a result of the competition between symmetry breaking
and decreasing pressure.
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p�
�V

���������
Rh0

p

�h0 ��h�2
�
�VR1=2

h3=20

�
1�

�h
h0

�
� p0 �

�h
h0

p1:

(18)

Here p0 does not contribute to the lift for the reasons
outlined earlier, so that the lift on the cylinder per unit
length is

F�
�h
h0

p1l�
�VR

h20
�h; (19)

where �h is determined by the solution of the elasticity
problem.

For a thin compressible layer, the case treated above,
the normal strain is ��h�=Hl � p0=G� ��VR1=2�=
�Gh3=20 �. Therefore,

�h�
�V
G

HlR1=2

h3=20

; F�
�2V2

G
HlR3=2

h7=20

: (20)

In sharp contrast, a thin incompressible layer will
deform via shear with an effective shear strain
��u�=Hl � �l�h�=H2

l [9]. Balancing the elastic energyR
G
�R1=2h1=20 �h�=H2

l �
2dV � G
�R1=2h1=20 �h�=H2

l �
2 �

Hl
���������
Rh0

p
with the work done by the pressure p0�

���������
h0R

p
�2 �h

R
yields �h in terms of p0. Then, (17) and (19) give

�h�
�V
G

H3
l

h5=20 R1=2
; F�

�2V2

G
H3
l R

1=2

h9=20

: (21)
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A thick layer (Hl �
���������
h0R

p
) may be treated as an elastic

half space. The strain scales as ��h�=
���������
h0R

p
and remains

appreciable in a region of size h0R. Balancing the elastic
energy

R
G
��h�=

���������
h0R

p
�2dV �G
��h�=

���������
h0R

p
�2Rh0 with

the work done by the pressure p0�h
���������
Rh0

p
yields �h in

terms of p0. Then, (17) and (19) give

�h�
�V
G

R
h0
; F�

�2V2

G
R2

h30
: (22)

Finally, we consider the case of a cylindrical shell,
of radius R and thickness hs, moving over a rigid sub-
strate. Since the shell is thin it can be easily deformed
via cylindrical bending without stretching. The bend-
ing strain is �hs�h�=R2 so that the elastic energyR
G
�hs�h�=R2�2dA� �Gh3s�h2�=R3. Balancing this

with the work done by the pressure p0�
���������
h0R

p
�2 �h

R yields
�h in terms of p0. Then, (17) and (19) give

�h�
�V
G

R7=2

h3sh
1=2
0

; F�
�2V2

G
R9=2

h3sh
5=2
0

: (23)

We note that the above scalings for cylindrical contacts
can be trivially generalized to spherical contacts for the
case of small deformations, but space precludes us from
discussing these in detail.

We conclude with a discussion of how our results may
be applied to the lubrication of cartilaginous joints
[10,11], where a thin layer of a fluid-filled gel, the carti-
lage, coats the stiff bones and mediates the contact be-
tween them. Here, electrostatic effects prevent physical
contact of the surfaces under high static normal loads,
while elastohydrodynamic effects could enhance separa-
tion and thus reduce wear. Inspired by the treatment of
cartilage using poroelasticity [10,12], the continuum de-
scription of a material composed of an elastic solid skele-
ton and an interstitial fluid [13], we treat the cartilage
layer as an isotropic poroelastic material [14]. The gel can
then be described by its fluid volume fraction !�O�1�,
drained shear modulus G and drained bulk modulus
K �G, thickness Hl, permeability k, and interstitial fluid
viscosity �. Using dimensional reasoning, we can con-
struct a poroelastic time scale,
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TABLE I. Summary of scaling results for small surface deflections.

Geometry Material Surface displacement Lift force/unit length

Thin layer Compressible elastic solid �V
G

HlR1=2

h3=20

�2V2

G
HlR3=2

h7=20

Thin layer Incompressible elastic solid �V
G

H3
l

h5=20 R1=2

�2V2

G
H3
l R

1=2

h9=20

Thin layer Poroelastic solid �V
Geff

HlR1=2

h3=20

�2V2

Geff

HlR3=2

h7=20

Thick layer Elastic solid �V
G

R
h0

�2V2

G
R2

h30

Cylindrical shell Elastic solid �V
G

R7=2

h3sh
1=2
0

�2V2

G
R9=2

h3sh
5=2
0
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%p �
�H2

l

kK
; (24)

which characterizes the time for the diffusion of stress
over the layer thickness Hl due to fluid flow. Then the
response of the gel is governed by the relative size of %p to
the time scale of the motion, %� l=V �

���������
h0R

p
=V. If %�

%p, the motion is so slow that the interstitial fluid plays no
role in supporting the load. If %� %p, the fluid supports
some of the load transiently, thereby stiffening the gel.
Finally, if %
 %p, the response of the gel will depend on
the size of the Stokes’ length ls �

�������������
%�=�

p
. If ls �Hl,

there is no relative motion between the fluid and the solid,
and the gel behaves as an incompressible elastic solid
[15,16], with shear modulus G. From (20) and (21), we
see that the effective modulus is

Geff � p0Hl=�h�
l2

H2
l

G�
h0R

H2
l

G: (25)

To find the scale of the deflection and lift force, we use the
same scaling analysis as for a thin compressible elastic
layer but replace G with Geff�%�, so that (20) yields

�h�
�V

Geff�%�
HlR

1=2

h3=20

; F�
�2V2

Geff�%�
HlR

3=2

h7=20

; (26)

where Geff 2 fG; 
�h0R�=H
2
l �Gg. Inserting characteristic

values V � 1 cm=s, G � 107 g=s2 cm, Hl � 0:1 cm, R �
1 cm, h0 � 10�4 cm, and k

� � 10�13 cm3 s=g shows that
%
 %p, but since l�Hl significant material stiffening is
prevented. Consequently, the effective modulus is G and
the scale of the deflection is

��
�V
G

HlR
1=2

h5=20

� 1; (27)

which suggests that joints could easily operate in a pa-
rameter regime that optimizes repulsive elastohydrody-
namic effects. Although our estimates are based on
nonconforming contact geometries, in real joints where
conforming contacts are the norm, we expect a similar if
not enhanced effect.
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