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A generic model is introduced for brittle fragmentation in D dimensions, and this model is shown to
lead to a fragment-size distribution with two distinct components. In the small fragment-size limit a
scale-invariant size distribution results from a crack branching-merging process. At larger sizes the
distribution becomes exponential as a result of a Poisson process, which introduces a large-scale cutoff.
Numerical simulations are used to demonstrate the validity of the distribution for D = 2. Data from
laboratory-scale experiments and large-scale quarry blastings of granitic gneiss confirm its validity for
D = 3. In the experiments the nonzero grain size of rock causes deviation from the ideal model
distribution in the small-size limit. The size of the cutoff seems to diverge at the minimum energy
sufficient for fragmentation to occur, but the scaling exponent is not universal.
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Fragmentation is a process which appears at all length
scales. On a nuclear scale, fission produces fragments that
are of the size of atomic nuclei. In the range from mi-
crometers to decameters, grains of fragmented rock are
called clay, silt, sand, gravel, stones, or boulders, depend-
ing on their size. The Earth’s crust is fragmented into
tectonic plates, and the relevant length scales are
10*~107 m. On an astronomic scale, supernovas are ob-
vious fragmentation events.

Generic models of brittle fragmentation have long
been focused on Poisson processes in which more or
less uncorrelated flaws are activated in the sense that
they turn into propagating cracks under external loading.
Smooth cracks of dimension D — 1 thus produced are
usually assumed to propagate until they meet another
crack or a boundary of the specimen of dimension D.
Gilvarry [1] derived a fragment-size distribution under
these assumptions:

dn(Q) = Vov™' exp(=0)dQ, )

which was experimentally confirmed in the classic paper
by Gilvarry and Bergstrom [2]. In Eq. (1) the term
exp(—Q)dQ is the probability of forming a fragment of
size v, surface area s, and edge length [/, within an
interval dQ with Q = vy, + y,s + y,v, where the y’s
are the densities of “line,” “area,” and ‘“‘volume” flaws,
respectively. The line term should here be the dominant
one, which means that dn(Q) is reduced to

dn(v) = Vyu l@P=D/Dlexp(—v,l)dv. )

The term Vyv~! in Eq. (1) is the a priori number of
fragments in dQ. For a Poisson-process fragmentation
this term is doubtful as demonstrated by Grady and
Kipp [3] by numerical simulations. For 2D fragmentation
they showed that the a priori number of fragments is
independent of v, and hence the fragment-size distribu-
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tion should be purely exponential. Despite this fact, Eq. (2)
has been experimentally confirmed in numerous cases.

In this Letter, we demonstrate that the Gilvarry result
can indeed be derived from a Poisson process if one takes
into account that propagating cracks become unstable and
give rise to side branches that can merge to form addi-
tional (small) fragments. Yoffe [4] already pointed out
that, above a critical velocity, the stress field around a
crack tip develops stress maxima at an angle of ca. 60° on
both sides of the tip. It has indeed been demonstrated
experimentally [5], numerically [6,7], and theoretically
[6,8], that fast moving cracks split. Splitting changes the
stress field, but it is soon recovered, and a new splitting
takes place. This causes side branches around a crack to
appear at intervals with a well-defined mean value [9].
Side branches do not typically have energy enough for
further splitting.

Cracks are known to attract each other in the sense that
stress intensity in a thin strip of width € between two
cracks diverges as 1/e. The same applies of course to
adjacent side branches which therefore tend to eventually
merge. In a merging the tip of a side branch hits a free
(fracture) surface left behind by its neighboring branch so
that a single branch continues to propagate forward from
each merging point. Beyond the first mergings of side
branches of a main crack we thus have a “second genera-
tion” of branches that continue to propagate and attract
each other. Thereby the merging process continues with a
decimated number of branches in each new “‘generation,”
and correspondingly larger fragments created by merg-
ings. There is ample experimental evidence of dynami-
cal branching, see, e.g., Refs. [10] for results for rock
relevant for the present work, and there is also numerical
evidence of the kind of merging of side branches de-
scribed above [11-13].

In accordance with Gilvarry, we assume that flaws
within a fragile body are activated when external loading
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is applied. In a D-dimensional volume the activated flaws
form cracks of dimension D — 1, which merge to form
fragments. The probability of finding a fragment of size v
is simply proportional to the probability of not finding
an activated flaw within a volume v. Uncorrelated flaws
obey Poisson distribution, and we obtain the size distri-
bution [3]

dn,(v) = Vyy, exp(—y,v)dv (3)

for fragments of linear size / and volume v o [P,

Notice that we assume there is no macroscopic notch in
the fragile body so that the elastic energy loaded in it by
the time fragmentation begins is much higher than in
typical laboratory experiments on crack propagation [9].
The cracks created will thus propagate very fast and be
unstable for side-branch formation. We thus assume that a
main crack produces n, branches with an average mutual
distance of /;,. (For simplicity we consider in what follows
branches separated by this average distance; a general
model with, e.g., a distribution of mutual distances will be
reported elsewhere [14].)

As described above, adjacent branches of these n,
“first-generation” branches will eventually merge to
form n,/2P~! fragments of size [P. Mergings of the
farther propagating ‘‘second-generation” branches will
produce n,/(4P~1) fragments of size (2/,)", and this
merging process continues as a geometric series. This
kind of process (as well as the more general process of
Ref. [14]) leads to the fragment-size distribution

dny(v) o« nyv~CP=1/D gy, %)

Because of elastic relaxation and energy dissipation, the
branching-merging process will, however, be limited to a
finite range. This can be taken into account by defining
a penetration depth A for the side branches away from a
main crack. This means that, for fragments larger than
(A/2)P, the distribution dn2(v) should decay fast. As the
actual shape of the cutoff is not important [14] for the
final fragment-size distribution, we assume for simplicity
an exponential cutoff: dn,(v)exp[—v/(A/2)"].

Our fragmentation scenario can thus be described
such that the main cracks created by external loading
form fragments (by merging) in a Poisson-process,
while their side branches simulatneously form fragments
via the above branching-merging process. The resulting
fragment-size distribution can be expressed in the form

dn(v) < n,v~1@P=D/Dlgy, (v*) + Mdn (D), (5)

where v* = v/[v,(A/2)P], and ¥ is related to v = [P
through © o (I + A)P. The second term on the right-
hand side is the residual (fragment size reduced by A) of
the Poisson process after the side-branch fragments have
been formed. M, determines the relative normalization of
the two parts, and we assume here for simplicity that it is
an independent parameter. Notice, however, that this
assumption is well motivated in the large A limit relevant
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for this work, while a more careful consideration may be
needed for small A.

At D = 1, fragmentation is just a random breaking of
line into pieces. In such a process there are no side
branches, which means that n, and A must be zero.
Equation (5) then reduces to dn(v) o« dn,(v) as it should.
In higher dimensions we concentrate here on hetero-
geneous brittle materials (such as, e.g., granite) in which
dissipation is small, so that the penetration depth of
side branches is relatively large (i.e., A” ~1/y, and
My — 0). This case of large A is different from that of
the rather more ductile and homogeneous PMMA [9]. The
fragment-size distribution of Eq. (5) becomes now similar
to that of Gilvarry, Eq. (2), with the exception that the
cutoff is an exponential function of v instead of I.

When the external load is reduced, the density of
activated flaws decreases, so that eventually vy, — 0. We
know from numerical simulations for D = 2 [13,15-18]
and for D = 3 [11,12,16], as well as from experiments
[19-25], that this limit appears at a nonzero external
load, and that then the fragment-size distribution be-
comes dn(v) « dn,(v). It means that in this limit A — oo,

A similar fragment-size distribution is within the min-
ing community known as the Gaudin-Schuhmann distri-
bution [26,27]. It is usually expressed in the form that the
total mass of fragments smaller than / scales as [¥ with
y = 1. From dn,(l) = [} 1°dn,(l)dl we easily find that
dn,(l) = I. Fragmentation of crystalline rock seems thus
to be related to the large A limit, as expected.

We now turn to verification of the full fragment-size
distribution Eq. (5). For D = 2 a numerical model of a
fragile membrane can be constructed as a lattice of mass
points connected by elastic beams that break if the strain
on them exceeds a given threshold [28,29]. This model
allows a detailed analysis of fragmentation under external
loading. Figure 1(a) shows a snapshot of a membrane at an
early stage of fragmentation induced by homogeneous
expansion. A crack is initiated at a single spot and its
branching is clearly visible. Figure 1(b) shows the final
fragment-size distribution (from several simulations)
when the externally applied strain was o = 1.2. The
curve in this figure is a fit by Eq. (5). Figure 1(c) shows
the fragment-size distribution for ¢ = 1, which is the
minimal external strain required for fragmentation to
occur, and the line is a fit by Eq. (4) (i.e., by dn,).

For D = 3 the best evidence is provided by real experi-
ments. In the experiments, rock in the Bararp quarry
in Sweden was used in large-scale blasting tests [30].
This rock is reddish granitic gneiss with a typical grain
size of 3 to 10 mm, a density of 2670 kg/m>, a com-
pressive strength of 225-250 MPa and a tensile strength
of 13 MPa The measured P-wave velocity was
5400-5650 m/s. Seven single-row rounds were blasted
in a 10-12 m long and 5 m high bench, with different
hole sizes but with a roughly constant specific explosive
charge, ¢ = 0.55 kg per m? of rock. The explosive energy
supplied was then 1.5-1.8 MJ/m3. The hole diameters
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FIG. 1. (a) Snapshot of a small brittle membrane at an early
stage of fragmentation (broken bonds are removed so they
appear white). (b) The final fragment-size distribution aver-
aged over ~30 configurations for o = 1.2. The curve is a fit to
the data by Eq. (5): 1/y, = AP = 22.5 (in lattice units), and
My = 0.007. (c) Fragment-size distribution in the case of
minimal external strain (¢ = 1.0) required for fragmentation.
The line is a fit by Eq. (4).

used were 38, 51, 64, and 76 mm. Burden, spacing, and
the number of holes per blast were adjusted to the con-
stant specific charge. Before every new blast, a cautious
blasting of the bench face was performed in order to
reduce the damage zone from the previous blasting, and
to create a clean rock surface. Two packaged emulsion
explosives were used, Emulite 100 and Kemix from Dyno
Nobel with energy contents of 2.7 and 3.2 MJ/kg, respec-
tively. The charges were initiated at 25 ms intervals by
electronic programmable delay detonators. All rock in
the muck pile except boulders was screened and weighed
in three steps. First a Hercules rotary drum sizer was used
to obtain five fractions; 0-200, 200-350, 350-400,
400-500, and 500+ mm. The material of the fraction
0-200 mm was then passed through an Extec sizer to
obtain four subfractions, 0—25, 25-90, 90-120, and 120—
200 mm. Properly quartered samples were taken from
the 0—25 mm fraction and sieved in the laboratory. The
complete sieving process gave 19 fractions from 0—0.075
to 500+ mm, plus boulders that were counted and
weighed separately. The result was thus a fragment-size
distribution that covered almost 4 orders of magnitude in
linear size or 12 orders of magnitude in mass.

Seven large cylindrical rock samples were also cut
from the Bérarp rock and blasted in a closed blasting
chamber [31]. The sample diameters chosen were 100,
200, 250, and 300 mm, and the specimens’ height-to-
diameter ratios were in the range 1.2—-2.1. A single central
5 mm hole was drilled axially. The holes were charged
with desensitized PETN powder explosive with an energy
content of about 4.17 MJ/kg. The specific charge was
thus in the range 0.36-2.9 kg/m? or 1.5-12 MJ/m?>.
After blasting, all fragments in the chamber were either
picked up or carefully swept together. The coarse 10+ mm
material was screened manually in 10 fractions. The
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finer material was subjected to a two-step procedure,
technical screening with a sieve shaker and subsequent
manual screening to guarantee the precision of the tech-
nical screening. The loss of material in the blasting was
about 0.5-1.5%, and the loss during screening was about
0.05-0.25%. The complete sieving process gave 20 frac-
tions ranging from 0-0.063 to 100+ mm, covering more
than 3 orders of magnitude in linear size.

An obvious feature in fragmented rock is that, at a
small enough scale, the granular structure of the parent
rock affects the fragment-size distribution. It is much
harder to fragment single grains than to separate grains
from each other. This means that the nonzero grain size
introduces an effective small-size cutoff for fragments. If
the grain sizes have a continuous distribution g,.(v), we
expect that the correction to Eq. (5) can be expressed in
the form

dn(v) = dn(v)[1 + cg,(v)]dv, (6)

where c is the “strength” of the correction. The granular
texture of rock is formed by constituents in clastic sedi-
ments. The largest grains are composed of chert and
polycristalline quartz. Generically the size distribution
of these can be approximated by a log-normal distribu-
tion, g,(I) = exp[—(¢(I) — )?/w], where o0 = —3, w =
10, and ¢(I) = —log,(/) is the grain-size parameter used
in the so-called Udden-Wentworth scale. Inserting this
into Eq. (6), and using parameter c to fit the experimental
result, we obtain the results shown in Fig. 2.

It is obvious from Fig. 2(a) that the fragment-size
distributions of the quarry experiments are very close
to dn,(v), except for the smallest fragments. This means
having A — o and y,, = 0 in Egs. (5) and (6). The best fit
was obtained with ¢ = 14. The data from the laboratory

8

10 10 10* 10
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FIG. 2. Experimental fragment-size distributions from
quarry blastings (a) and laboratory experiments on cylin-
ders (b). The quarry data are fitted by dn,(v) (broken line),
and by dn,(v) (full line), with 1/y,, A — o0, and ¢ = 14.0. The
laboratory data are fitted likewise, except that ¢ = 2.6.
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FIG. 3. (a) The large fragment-size part of the data from the
laboratory experiments fitted by dn(v), with vy, as an adjust-
able parameter. (b) Scaling of the correlation length /1/7,
near the transition point E = E.: +E — JE, is plotted as a
function of (1/v,)'/3, and fitted by a power law with the
exponent —0.9. The resulting correlation-length exponent is
v=1.1.

experiments look very similar except for a cutoff at
large sizes. These cutoffs appear at clearly smaller linear
fragment sizes than the thicknesses of the cylinders
used, and therefore finite-size effects can be ruled out.
As expected, the cutoff moves to larger values as the
energy input per unit volume (E) is decreased [28]. By
estimating the minimum energy input needed to crack
the cylinders [E. = (0.5 in units of the smallest energy
input of the experiments in Fig. 2(b)], the scaling of the
cutoff can be investigated. In Fig. 3 we show (vE — /E,)
as a function of (1/vy,)"/3, and a fit by a power law,
which gives —0.9 for the exponent. This means that the
correlation-length exponent is » = 1.1. This value should
be compared with the correlation-length exponents v =
0.67, 3.4, 4.8 reported in Refs. [18,28]. It is evident that v
is not universal in brittle fragmentation. This lack of
universality probably originates from the fact that vy, is
related to the density of activated flaws, which obviously
depends on the loading conditions and on the texture of
the material.

To summarize, a generic model for brittle fragmenta-
tion leads to the fragment-size distribution Eq. (5), and
this distribution is in excellent agreement with simulation
results in 2D and experimental results in 3D. Further
support for this distribution is provided by the very re-
cent experimental results on thin tubes of glass (effec-
tively D = 2) [25]. According to this generic model,
the fragment-size distribution results from two distinct
mechanisms: a crack branching-merging process pro-
duces a scale-invariant size distribution in the small
fragment-size limit, and a Poisson process produces an
exponential cutoff at a system-dependent length scale.
This length scale can be interpreted as a correlation
length, and it displays nonuniversal scaling behavior.
The correlation length, the penetation depth of the
branching-merging process, and the mass fraction of the
Poisson-process residual, were here used as the free pa-
rameters of the model
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