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Drag Reduction by Polymers in Wall Bounded Turbulence
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We elucidate the mechanism of drag reduction by polymers in turbulent wall-bounded flows:
while momentum is produced at a fixed rate by the forcing, polymer stretching results in the suppres-
sion of momentum flux to the wall. On the basis of the equations of fluid mechanics we develop
the phenomenology of the ‘‘maximum drag reduction asymptote’’ which is the maximum drag
reduction attained by polymers. Based on Newtonian information only we demonstrate the existence
of drag reduction, and with one experimental parameter we reach agreement with the experimental
measurements.
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FIG. 1 (color online). Mean normalized velocity profiles as a
function of the normalized distance from the wall during drag
reduction. The data points from numerical simulations (solid
circles) [8] and the experimental points (open circles) [9]
represent the Newtonian results. The solid line is our theory
Eq. (12), which for large y� agrees with von Kármán’s loga-
rithmic law of the wall (2). The data points (squares) [10]
represent the maximum drag reduction (MDR) asymptote. The
dashed curve represents our theory for the profile (18), which
for large y� agrees with the universal law (15). The arrow
marks the crossover from the viscous linear law (11) to the
asymptotic logarithmic law (15). The filled triangles [10] and
open triangles [11] represent the crossover, for intermediate
concentrations of the polymer, from the MDR asymptote to the
distance from the wall y and the normalized mean
velocity V��y�� (which is in the x direction with a

Newtonian plug. Our theory is not detailed enough to capture
this crossover properly.
The addition of few tens of parts per million (by
weight) of long-chain polymers to turbulent fluid flows
in channels or pipes can bring about a reduction of the
friction drag by up to 80% [1–4]. This phenomenon of
‘‘drag reduction’’ is well documented and is used in
technological applications from fire engines (allowing a
water jet to reach high floors) to oil pipes. In spite of a
large amount of experimental and simulational data, the
fundamental mechanism has remained under debate for
a long time [4–6]. In such wall-bounded turbulence,
the drag is caused by momentum dissipation at the
walls. For Newtonian flows (in which the kinematic vis-
cosity is constant) the momentum flux is dominated by
the so-called Reynolds stress, leading to a logarithmic
(von Kármán) dependence of the mean velocity on the
distance from the wall [7]. However, with polymers, the
drag reduction entails a change in the von Kármán log
law such that a much higher mean velocity is achieved. In
particular, for high concentrations of polymers, a regime
of maximum drag reduction is attained (the ‘‘MDR
asymptote’’), independent of the chemical identity of
the polymer [2]; see Fig. 1. In this Letter we elucidate
the fundamental mechanism for this phenomenon: while
momentum is produced at a fixed rate by the forcing,
polymer stretching results in a suppression of the momen-
tum flux from the bulk to the wall. Accordingly, the mean
velocity in the channel must increase. We derive a new
logarithmic law for the mean velocity with a slope that
fits existing numerical and experimental data. The law is
universal, thus explaining the MDR asymptote.

Turbulent flows in a channel are conveniently discussed
[7] for fixed pressure gradients p0 � �@p=@x where x, y,
and z are the lengthwise, wall-normal, and spanwise
directions, respectively. The length and width of the
channel are usually taken much larger than the midchan-
nel height L, making the latter a natural rescaling
length for the introduction of dimensionless (similarity)
variables. Thus the Reynolds number Re, the normalized

�
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dependence on y only) are defined by

R e � L
��������
p0L

p
=	0; y� � yRe=L;

V� � V=
��������
p0L

p
;

(1)

where 	0 is the kinematic viscosity. One of the most
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famous universal aspects of Newtonian turbulent channel
flows is the ‘‘logarithmic law of the wall’’ which in these
coordinates is expressed as

V��y�� � ��1
K lny� � B; for y� * 30; (2)

where the von Kármán constant �K � 0:436 and intercept
B � 6:13 [12]. For y� < 10 one observes a viscous sub-
layer, V��y�� � y�, Fig. 1. The riddle of drag reduction is
then introduced in relation to this universal law: in the
presence of long-chain polymers the mean velocity profile
V��y�� (for a fixed value of p0 and channel geometry)
changes dramatically. For a sufficiently large concentra-
tion of polymers V��y�� saturates to a new (universal,
polymer independent) ‘‘law of the wall’’ [2],

V��y�� � 11:7 lny� � 17 ; for y� * 12: (3)

For smaller concentration of polymers the situation is as
shown in Fig. 1. The Newtonian law of the wall (2) is the
solid line for y� * 30. The MDR asymptote (3) is the
dashed line. For intermediate concentrations the mean
velocity profile starts along the asymptotic law (3), and
then crosses over to the so-called ‘‘Newtonian plug’’ with
a Newtonian logarithmic slope identical to the inverse of
von Kármán’s constant. The region of values of y� in
which the asymptotic law (3) prevails was termed ‘‘the
elastic sublayer’’ [2]. The relative increase of the mean
velocity (for a given p0) due to the existence of the new
law of the wall (3) is the phenomenon of drag reduction.
Thus, the main theoretical challenge is to understand the
origin of the new law (3) and, in particular, its universal-
ity or independence of the polymer used. A secondary
challenge is to understand the concentration dependent
crossover back to the Newtonian plug. In this Letter
we argue that the phenomenon can be understood mainly
by the influence of the polymer stretching on the
y�-dependent effective viscosity. The latter becomes a
crucial agent in carrying the momentum flux from the
bulk of the channel to the walls (where the momentum is
dissipated by friction). In the Newtonian case the viscos-
ity has a negligible role in carrying the momentum flux;
this difference gives rise to the change of Eq. (2) in favor
of Eq. (3), which we derive below.

The equations of motion of polymer solutions can be
written as [13,14]

@U=@t� U 	 rU � �rp� r 	T � 	0r
2U; (4)

where T is the extra stress tensor that is due to the
polymer. Denoting the polymer end-to-end vector dis-
tance (normalized by its equilibrium value) as r, the
average dimensionless extension tensor R is Rij �
hrirji, and the extra stress tensor is (with !ij � @Ui=@xj),

T � 	p�! 	R�R 	!T � @R=@t� U 	 rR�: (5)

Here 	p (proportional to the polymer concentration) is the
polymeric contribution to the viscosity in the limit of zero
shear. In order to develop a transparent theory we propose
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to ignore the fluctuations of R compared to its mean. In
other words, we will take R � hRi. This allows one to
simplify Eqs. (4) and (5) to a modified Navier-Stokes
equation with an effective viscosity, 	0 ) 	�y�, and pres-
sure, p ) P:

@Ui=@t�UjrjUi � �riP�rj�	�!ij �!ji��; (6)

	�y� � 	0 � 	pRyy�y�; P � p� @	=@t� U 	 r	:

Careful analysis of the tensorial components of hRi
shows that the effective viscosity is proportional to
Ryy, even though Rxx is considerably larger. Obviously,
the polymer elongation, Ryy, depends on the distance
from the wall, leading to a corresponding dependence
of the effective viscosity.

Armed with the effective equation we establish the
mechanism of drag reduction following the standard
strategy of Reynolds, considering the fluid velocity U�r�
as a sum of its average (over time) and a fluctuating part:

U �r; t� � V�y� � u�r; t�; V�y� � hU�r; t�i: (7)

For a channel of large length and width all the averages
and, in particular, V�y� ) V�y� are functions of y only.
The objects that enter the theory are the mean shear S�y�,
the Reynolds stress W�y�, and the kinetic energy K�y�;
these are defined, respectively, as

S�y� � dV�y�=dy; W�y� � �huxuyi;

K�y� � hjuj2i=2:

A well known exact relation [7] between these objects is
the pointwise balance equation for the flux of mechanical
momentum; near the wall (for y � L) it reads

	�y�S�y� �W�y� � p0L: (8)

On the right-hand side of this equation we see the pro-
duction of momentum flux due to the pressure gradient;
on the left-hand side (LHS) we have the Reynolds stress
and the viscous contribution to the momentum flux, with
the latter usually being negligible (in Newtonian turbu-
lence 	 � 	0) everywhere except in the viscous boundary
layer. The y dependence of the effective viscosity 	�y� in
the elastic layer is shown to be crucial for drag reduction.

A second relation between S�y�, W�y�, and K�y� is
obtained from the energy balance. The energy is created
by the large scale motions at a rate of W�y�S�y�. It is
cascaded down the scales by a flux of energy, and is finally
dissipated at a rate �, where � � 	h!2

iji. We cannot cal-
culate � exactly, but we can estimate it rather well at a
point y away from the wall. When viscous effects are
dominant, this term is estimated as 	�a=y�2K�y� (the
velocity is then rather smooth, and the gradient exists
and can be estimated by the typical velocity at y over the
distance from the wall). Here a is a constant of the order
of unity. When the Reynolds number is large, the viscous
dissipation is the same as the turbulent energy flux down
244503-2
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the scales, which can be estimated as K�y�=��y� where
��y� is the typical eddy turn over time at y. The latter is
estimated as y=b

����������
K�y�

p
where b is another constant of the

order of unity. We can thus write the balance equation at
point y as

	�y��a=y�2K�y� � bK3=2�y�=y � W�y�S�y�; (9)

where the bigger of the two terms on the LHS should win.
We note that contrary to Eq. (8), which is exact, Eq. (9) is
not exact. We expect it, however, to yield good order of
magnitude estimates as is demonstrated below. Finally,
we quote the experimental fact [2,15] that outside the
viscous boundary layer

W�y�
K�y�

�

�
c2N; for Newtonian flow;
c2V; for viscoelastic flow:

(10)

The coefficients cN and cV are bounded from above
by unity. [The proof is jcj � jWj=K � 2jhuxuyij=
hu2x � u2yi � 1, because �ux � uy�2 � 0.] While cN is
known quite accurately, cN � 0:5, the actual values of
cV varies somewhat from experiment to experiment,
such that the ratio cV=cN (which is all that we need to
use below) varies between 0.3 and 0.7. In our estimates we
take cV=cN � 0:5.

We show now that Eqs. (8)–(10) are sufficient for
deriving the Newtonian law (2) and the viscoelastic law
(3) with equal ease. Begin with the Newtonian case. The
result of this derivation is not new—but we want to stress
that the same equations give rise to both the well known
and the new results. Substitute Eq. (10) in Eqs. (8) and (9)
with 	�y� � 	0, turning them into algebraic equations for
K�y� and S�y�, and eventually to a first order differential
equation for V�y�. In the viscous sublayer K�y� � 0, and
the solution in rescaled coordinates is

V��y�� � y�; y� � y�v � a=cN; (11)

Outside the viscous sublayer (y� > y�v ) we find

V��y�� � ��1
K lnY�y�� � B� ��y�� ; (12a)

B � 2y�v � ��1
K ln�e�1� 2�Ky

�
v �=4�K�; (12b)

where �K � c3N=b and we defined

Y�y�� � �y� �

���������������������������������������������
y�2 � y�2

v � �2�K�
�2

q
�=2;

��y�� �
2�2

Ky
�2
v � 4�K�Y�y

�� � y�� � 1

2�2
Ky

�
:

For y� � y�v Eqs. (12) turn into (2) since Y�y�� ! y�

and ��y�� ! 0.
Note that Eqs. (12) pertain to the whole y� domain. By

taking the experimental values of �K and B we compute
y�v � 5:6 to be compared with the experimental value of
5:5� 0:5; cf. [7]. The resulting Newtonian profile,
Eqs. (11) and (12), is shown in Fig. 1 as the solid line.
The excellent agreement with the experimental and nu-
merical data in the entire region of y� indicates that our
244503-3
balance equations are sufficiently accurate, and we can
proceed to the viscoelastic case.

To see how the law (3) emerges we consider Eqs. (8)
and (9) with y-dependent effective viscosity. We warn the
reader that this is not fully justified—there are terms in
the full viscoelastic equations that cannot be simplified to
the form of a space dependent viscosity. Nevertheless, we
propose (and justify further below) that the terms with
effective viscosity are the main terms that allow the
momentum flux to be carried in the elastic sublayer. In
other words, when the concentration of the polymer is
large enough, we can neglect the second term in favor of
the first in Eq. (8) and estimate 	�y� � Lp0=S�y�.
Substituting this estimate in Eq. (9), neglecting the sec-
ond term on the LHS, using Eq. (10), and finally rescaling
the variables results in

@V�=@y� � cNy�v =cVy�: (13)

From here follows immediately the new logarithmic law
of the wall

V��y�� � ��1
V lny� � BV; �V � cV=cNy�v ; (14)

where the intercept BV is still unknown (but will be
determined momentarily). The slope of the new law is
independent of the polymer concentration and is greater
than the von Kármán slope 1=�K; the ratio of the slopes
is, in fact, �Ky�v cN=cV, which is about 4.9 according to
the above estimates cN=cV � 0:5 and y� � 5:6. Com-
paring with the measured ratio of slopes in Eqs. (2) and
(3), which is about 5.1, we consider our estimates to be
quite on the mark. As said before, this increase in slope is
the phenomenon of drag reduction. We stress that the
information gained from the Newtonian data alone is
sufficient to predict drag reduction, since cV � 1.

To find BV we match the logarithmic law (14) to the
viscous sublayer solution (11) by the value of V��y�� and
its derivative. First, the logarithmic law has slope 1 at
y�m � ��1

V . Next, matching at this point the viscous solu-
tion V��y�m� � ��1

V to (14), we find BV � ln�e�V�=�V. We
note that if we substitute the experimental value ��1

K �
11:7, we findBV � �17 in perfect agreement with Eq. (3).
We thus write the law (14) in its final form (with just one
constant remaining)

V��y�� �
1

�V
ln�e�Vy

��: (15)

Note that this universal result is obtained without
reference to any model of the polymer dynamics, and
the only assumptions are that the polymer viscosity domi-
nates the momentum transfer in the elastic layer and the
logarithmic law (14) is valid all the way to y�m . At this
point, we demonstrate that these two assumptions, which
lead to the universality of (15), are well supported by a
closer consideration of the polymer dynamics.

The fundamental reason for the appearance of a
y-dependent viscosity is the coil-stretch transition of the
244503-3
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polymers under turbulent shear. This transition occurs in
any reasonable model of the polymer-turbulence interac-
tion, the simplest of which is of the form [13]

dR=dt � �R=~��p � s�y�R; s�y� �
�����������
h!2

iji
q

; (16)

where ~��p is the polymer relaxation time. In the elastic
sublayer we estimate s�y� � g

�����������
W�y�

p
=y, with some con-

stant g � O�1�, and expect a coil-stretch transition when
g

�����������
W�y�

p
=y � 1=~��p. Defining �p � g~��p we then find in

the elastic sublayer (where polymers are stretched)

W�y� � �y=�p�
2: (17)

This equation is important since it can be solved together
with Eqs. (8)–(10) to find S��y�� when the polymers are
stretched. The answer is

S��y�� �
1

�Vy
�

��
y�L
Re ‘

�

�

���������������������������������������������������������������
1� ��2�Ky

�
v cV�

2 � 1�

�
y�L
Re ‘

�
2

s �
;

(18)

where ‘ � 2�Ky�v cV�p
��������
Lp0

p
. Equation (13) is recaptured

from this, more general equation, when Re is large and
f	 	 	g ! 1. Then the identity of the polymer is lost, giving
rise to the universal drag reduction asymptote (15). It can
also be checked that the matching point y�m used above
indeed connects smoothly the viscous sublayer to the
asymptotic law (15) (see arrow in Fig. 1).We can therefore
conclude that our derivation of Eq. (15) is fully consistent
with the polymer dynamics, and we understand how the
polymer characteristics drop out, leading to the universal
law (15).

The mechanism of drag reduction is then the suppres-
sion of the Reynolds stress in the elastic sublayer. The
Reynolds stress is the main agent for momentum flux in
the Newtonian case, and its suppression results in an
increase of the mean mechanical momentum (velocity)
in the channel. The increase in viscosity, of course, leads
to increased energy dissipation, but this is immaterial for
the phenomenon. This is the main difference between drag
reduction in wall-bounded turbulence and in homogene-
ous turbulence [16]. We also note a term in the dynamical
equations for the viscoelastic flow of the form dhrirji=dt,
which cannot be written as an effective viscosity. This
term vanishes for uncorrelated rotations of individual
polymeric molecules. However, it can contribute to the
energy flux from the mean shear to turbulent fluctuations
in wall-bounded flows due to a possible ‘‘correlation
instability,’’ which leads to synchronized rotation of
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neighboring polymers. A more detailed consideration of
such terms should provide also the detailed crossover
behavior seen in Fig. 1.

Finally, we propose direct numerical simulations in
channel flows to test our approach. Instead of simulating
the viscoelastic equations, we propose to simulate the
Navier-Stokes equations with a space dependent viscosity
according to the above theory. We predict that a viscosity
profile that remains constant for 0 � y� � y�V , and then
grows linearly towards the center, should result in drag
reduction in much the same way as seen in experiments
with polymers. Such simulations would add support to the
views offered in this Letter.
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