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Structure of Wave Functions of Pseudointegrable Billiards
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Wave functions of pseudointegrable plane polygonal billiards are investigated. It is demonstrated that
they have clear structures (superscars) related with families of classical periodic orbits which do not
disappear at large energy.
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responds to multiple scattering when optical boundaries wave with zero boundary conditions on SD analogous to
A central problem of quantum chaos is an adequate
description of different types of quantum systems which
do not permit an exact solution. For example, it is well
accepted that eigenenergies of chaotic systems are dis-
tributed as eigenvalues of random matrix ensembles [1],
and their eigenfunctions are described by Gaussian ran-
dom functions [2]. But much less is known when a model
is neither chaotic nor integrable.

Particular intriguing examples are plane polygonal
billiards whose classical mechanics is surprisingly rich.
When all their angles are rational with� these models are
called pseudointegrable (PI) because their classical tra-
jectories cover two-dimensional surfaces of genus g > 1
(see, e.g., [3]). It was established numerically [4] that
spectral statistics of PI models in many aspects resembles
statistics of the Anderson model at the metal-insulator
transition [5]. In particular, the nearest-neighbor distri-
bution displays a repulsion at small distances and an
exponential decay at large separations.

The purpose of this Letter is to investigate wave func-
tions of certain PI systems. It is found that they have a
superscarring property; namely, many of them have clear
structures connected with families of classical periodic
orbits which, it seems, do not disappear at large energy.

The scar phenomenon in chaotic systems is not new.
The existence of structures near unstable periodic orbits
in chaotic wave functions was established in [6] and later
many works were done to clarify the subject (see, e.g., [7]
and references therein). PI systems differ in many aspects
from chaotic and integrable systems and to the authors’
knowledge no conjecture about their wave functions
exists in the literature.

The main difficulty with analytical treatment of PI
models is the strong diffraction on billiard corners with
angles � �=n with integer n. When a bunch of parallel
classical trajectories hits these singular corners it splits
discontinuously into two different bunches whose
boundaries are called optical boundaries. Quantum me-
chanics smooths such singularities and associates with
them scattering amplitudes [8] which due to discontinu-
ous splitting of classical trajectories have different asym-
ptotics at large distances in different regions bounded by
optical boundaries. An especially complicated case cor-
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for different centers are close to each other. Up to now,
due to the singular character of such a diffraction, it has
been proved analytically only that the two-point correla-
tion form factor for certain PI models takes at the origin a
finite value different from standard statistics [9].

For PI systems classical periodic orbits form continu-
ous families of parallel trajectories restricted by singular
corners. Hence, waves traveling in such periodic orbit
channels (POC) are influenced by infinite periodic arrays
of singular diffractive centers. Fortunately, for the scat-
tering on a staggered periodic array of half planes this
problem has an exact solution found in [10] by the
Wiener-Hopf method. In [11] this solution was analyzed
in the semiclassical limit of large energy, and it was
found that in the most singular case when the incidence
angle (with respect to a plane formed by half-plane ends)
is going to zero, all transmission and reflection coeffi-
cients tend also to zero except the ‘‘elastic’’ reflection
coefficient (corresponding to the specular reflection from
this plane) which goes to �1. It means that the fictitious
scattering plane passing through singular diffraction cor-
ners plays the role of a perfect mirror with the Dirichlet
boundary conditions. This mirror does not really exist,
but the multiple scattering on an infinite number of par-
allel half planes is equivalent to the reflection on this
mirror plus corrections given by complicated formulas
(see [11]) and governed by the perturbation parameter

u �
�����
kl

p
’; (1)

where ’ is the incidence angle with respect to the scatter-
ing plane, l is the distance between singular corners along
the scattering plane, and k �

����
E

p
is the wave momentum.

Hence, when u ! 0 (and k! 1) the dominant approxi-
mation to the discussed multiple scattering problem con-
sists of treating scattering planes as true mirrors on which
the total wave tends to zero.

After unfolding each periodic orbit family in PI mod-
els corresponds to an infinite POC restricted from both
sides by straight lines passing through singular corners
called singular diagonals (SD). When a wave with a small
u moves inside such a channel, it reflects back and forth
from SD as from perfect mirrors forming a propagating
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FIG. 1. (a) Unfolded scar state for the simplest POC of the
right triangle with angle �=8. (b) Schematic folding of this
state. Dashed lines indicate its maxima. Three solid lines show
a region near SD where the unfolded scar function tends to
zero. (c)–(e) Eigenfunctions with energy E close to the scar
energy Em;n. (c) E � 407:4; E50;1 � 407:6. (d) E � 1015:97;
E79;1 � 1016:12. (e) E � 1968:97; E110;1 � 1969:15.
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the Borrmann effect for scattering in crystals [12]. There-
fore, in each POC one can construct quasistates which we
call unfolded scar states with the following properties:
(i) they have a small perturbation parameter (1), (ii) they
obey the Dirichlet boundary conditions on SD, and
(iii) they are periodic (or antiperiodic) along POC;

��scars�
m;n �; �� � sin

�
�
l
m	 �

�
sin

�
�
w
n�

�
����: (2)

Here  and � (0<�<w) are coordinates, respectively,
along and perpendicular to POC, l is the length of POC
equal to the length of primitive periodic trajectory, w is
the channel width, m; n 
 1 are integers, and � is a phase
related with the choice of coordinates. ��x� in (2) is the
characteristic function of POC [��x� � 1 or 0 when x is,
respectively, inside or outside POC] introduced to stress
that scar states exist only inside POC. The bulk energy of
such a scar state is

Em;n �
�
�
l

�
2
m2 	

�
�
w

�
2
n2: (3)

Folding back the scar state (2) leads to a complicated
expression ��scar�

m;n �x; y� which can be represented in a
suitable expansion basis for any system. Folded scar
states (i) obey the correct boundary conditions on
billiard boundaries and (ii) fulfill the equation ��	
Em;n��

�scar�
m;n �x; y� � 0 everywhere except on SD.

The above scar states exist only if the perturbation
parameter (1) is small. As ’ � �n=wk the criterion of
existence of a strong scar state with energy (3) is

1 � n � nmax and nmax � w
�������
k=l

p
: (4)

This inequality implies that any POC in PI models sup-
ports scar states with fixed n when k! 1 in marked
contrast with the scarring on unstable periodic orbits
where contributions from individual orbits tend to zero
in semiclassical limit. To stress this difference we propose
to refer to such scars as to superscars.

The total number of scar states depends on the system
considered. Only for special type of PI models called
Veech polygons [13] (see also [1]) analytical calculations
are possible. For such systems (i) the number of POC with
l < L has the quadratic asymptotics

N�l < L� !
L!1

CL2=A; (5)

where A is the billiard area, C is a system dependant
constant, and (ii) the width of POC with length l is

w � �A=l; (6)

where � < 1 is a constant taken from a finite set.
Using (4) and these formulas one concludes that (i) scar

states exist only for POC whose length is restricted:

l � lmax with lmax � k1=3 (7)

(other channels are closed and cannot support propagat-
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ing waves with n 
 1) and (ii) the averaged density of
scar states ���s is of the same order as the mean total
density of states ���:

��� s �
X
scars

��E� Em;n� �
X
l<lmax

l
k
nmax � ���: (8)

These results show that for PI models where (5) and (6)
hold scar states are a good zero-order approximation to
wave functions. As an illustration consider, e.g., the right
triangle with angle �=8. Its simplest POC corresponds to
orbits perpendicular to the shortest side of the triangle.
After unfolding it has a rectangular shape as indicated in
Fig. 1(a). The folded scar state for this POC is shown
schematically in Fig. 1(b). Dashed lines in this figure
indicate maxima of the scar state. They have a compli-
cated form except at the right corner of the triangle where
they form horizontal lines.

In Figs. 1(c)–1(e) three true eigenfunctions of this
triangular billiard (with area 4�) are presented. The
eigenfunctions were chosen because their energies are
close to the scar energy (3) calculated with l � a and
w � b, where a and b � a tan�=8 are sides of the tri-
angle. The characteristic horizontal lines corresponding
to the scar picture [as in Fig. 1(b)] are clearly seen in all
these eigenfunctions. These pictures are just a few ex-
amples (among many others) of clear scar eigenfunctions
observed in triangular billiards. Complicated folding of
POCs in such models makes it difficult to visualize scar
states associated with longer trajectories. This goal can
more easily be achieved in another PI model, called
barrier billiard (BB), which in the simplest case consists
of a rectangular billiard with the Dirichlet boundary
conditions on all sides except the half of one side where
the Neumann boundary condition is imposed [14]. In this
model POCs are the same as for integrable rectangular
billiards and are specified by two coprime integers M;N.
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The POC length is l �
�������������������������������������
�2aM�2 	 �2bN�2

p
, where a; b are

sides of the rectangle. The usual POCs for rectangular
billiard are split (and restricted) by images of the singular
point. For odd M each POC is divided into two POCs of
width w � 2ab=l. Both channels can support scar states,
but one requires odd m and the other, even m. When M
is even, POC remains unramified and has the width
w � 4ab=l.

In Figs. 2 and 3 a few examples of high-excited scar
states for BB with �b=a�2 �

���
5

p
	 1 and ab � 4� are

presented. Black and white regions in these figures cor-
respond, respectively, to positive and negative values of
eigenfunctions which are small in regions with irregular
nodal patterns. This nodal domain representation is quite
sensitive because even a weak noise changes drastically
regular nodal pictures. Nevertheless, these (and many
other) pictures show high-quality scar structures for BB.
Fixing a POC and increasing the energy we always find a
reasonably good picture of the corresponding scar state
close to the scar energy (3). With increasing energy the
perturbation parameter (1) for a given scar decreases, but
the number of open scar channels increases [see (7)] and a
typical eigenfunction may have contributions from many
different scars. Their quantitative description is achieved
by computing the overlap of folded scar states ��scar�

m;n �x; y�
with exact eigenfunctions �E �x; y�

Cm;n�E � �
Z

��scar�
m;n �x; y��E �x; y�dxdy: (9)

In computations we fix n and choosem from the condition
of minimum of jE � Em;nj (when m is kept fixed only
one peak appears). In Fig. 4(a) we plot jCm;n�E�j2 versusE
with 2000<E < 4000 for the 1:1 scar state.
FIG. 2. BB eigenfunctions strongly influenced by 1:0 and 2:1
scar states. (a) Folded scar states for the 1:0 (top) and 2:1
(bottom) periodic trajectories. The thick line shows the part of
BB with the Neumann boundary condition. Dashed lines in-
dicate maxima of the scar state. Three solid lines show regions
around SD where unfolded scar states tend to zero. (b) Eigen-
function with E � 10 209:55. The 1:0 scar energy E85;1 �
10 209:65. (c) Eigenfunction with E � 10 017:57. The 2:1
scar energy E453;1 � 10 017:67.
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Spikes in such figures confirm that practically near all
scar energies (3) there exists true eigenfunctions which
have a strong contribution from the given scar state. The
analysis of these spikes reveals that their local density

�n�E� �
�X

 

jCm;n�E �j2��E� E 	 Em;n�
�
m

(10)

averaged over different m can well be approximated by
the Breit-Wigner distribution [see Fig. 4(b)]

�n�E� �
�n�E�

2�f�E� "n�E��2 	 �2
n�E�=4g

(11)

similar to the one observed in random band matrices with
preferential basis [15]. For the 1:1 scar state the best fit
gives �n � 3:5n2=

���
k

p
which agrees qualitatively with an

estimate which can be obtained from [11] that for BB the
total width of a given scar state in the leading order is
�n�E� � �n2=w2�

�������������
l=kw2

p
.

For Veech billiards the density of scar states is of the
same order as the total density of states [cf. (8)] and one is
led to the conjecture that their eigenfunctions can be
represented as a sum over scar states,

�E �x; y� �
X
scars

Cm;n�E ��
�scars�
m;n �x; y�: (12)

An important characteristic of wave functions is a set of
participation ratios (see, e.g., [16,17] and references
therein)

Rq�E� �

 X
m;n

jAm;n�E�j
2q

!
�1

; (13)

where Am;n�E� are coefficients of the expansion of wave
functions in a suitable basis normalized such thatP
m;njAm;nj

2 � 1. PI systems, as all systems with inter-
mediate statistics, should have some fractal properties
FIG. 3. The same as in Fig. 2 but for 1:1 scar states. (a) Folded
scar states for 1:1 POCs with even and odd m. (b) Eigen-
function with E � 10 041:41. The 1:1 scar energy E347;1 �
10 041:87. (c) Eigenfunction with E � 10 099:58. The 1:1
scar energy E348;1 � 10 099:82.
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FIG. 5. Participation ratios R2 (top) and R3 (bottom) versus
energy for BB. White lines indicate the fits R2 � 2:52
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k

p
and

R3 � 4:7k.
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FIG. 4. (a) Overlap of exact eigenfunctions of BB with the 1:1
scar state with (from bottom to top) n � 1; 2; 3; 4 (graphs for
different n are shifted up for clarity by n� 1 units). (b) Local
density (10) for this overlap [graphs with different n are shifted
up by 5�n� 1� units]. Dashed lines indicate the best fit in the
Breit-Wigner form (11).
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[16] and it is natural to expect that Rq�E� !
k!1

kDq�q�1�

with fixed Dq called generalized fractal dimensions
(see, e.g., [16,17]).

Under the simplest assumption that for scar states the
local density of jCm;n�E�j

2q is proportional to �qn�E� with
the Breit-Wigner form (11) of �n�E�, (12) and (11) with
the above estimate for �n give Dq � 0:5 confirming the
fractal character of BB eigenfunctions in momentum
representation. In Fig. 5 we plot Rq for q � 2 and q � 3
for BB computed directly from the expansion of eigen-
functions into trigonometric series. The best fits R2 �
2:52

���
k

p
and R3 � 4:7k very well describe the data in the

given interval of energy which means that for BB D2 �
D3 � 0:5 in accordance with the above estimates. The
assumed value of spectral compressibility for BB, � �
0:5 [14], is close to the spectral compressibility ��D2�
numerically computed at the point D2 � 0:5 for the
critical power-law random band matrix model (cf. Fig. 2
of [17]).

In summary, we have argued that strong diffraction in
PI systems leads to the formation of a new type of long-
lived resonant states (scar states) propagating inside POC
and reflecting from SD as from perfect mirrors. Many
true eigenfunctions of such models have surprisingly
clear structures associated with such states even at high
energies. It follows from our results that PI models are the
best models of scar phenomenon. For good PI models
(Veech billiards) the density of scar states is a constant,
and they can be considered as the basis of perturbation
expansion. A weak residual interaction between them
(neglected in this Letter) forms true eigenstates and leads
to an intermediate character of spectral statistics for these
models. It appears that this interaction shares many fea-
tures with the critical random band matrix model. We
have also checked that BB wave functions have fractal
properties in momentum space. Though we have dis-
cussed only PI models a certain form of superscarring
244102-4
seems to exist also in general plane polygonal billiards
because of two main ingredients of the discussed mecha-
nism: strong diffraction and the existence of POCs are
both presented in such systems.
*Unité de recherche de l’Université de Paris XI associée
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