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Nonlinear Dynamics of Incommensurate Surface Layers
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We describe analytically the nonlinear dynamics of the incommensurate surface layer (‘‘self-
modulated’’ system) with a spatially periodical structure. In the framework of the Frenkel-
Kontorova model the nonlinear excitations of the periodic soliton lattice, such as moving additional
kinks and gap solitons, are investigated.
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relief by a trigonometric function and assume the sub-
strate to be absolutely hard. Then the potential energy of
the system is given by

ing form [4–6]:

u0 � �� 2am�z; k�; (5)
Investigation of the nonlinear dynamics of real physi-
cal systems, taking into account their discreteness, inter-
nal microstructure, and spatial inhomogeneity, has
always been the focus of attention in the theory of non-
linear waves and solitons, particularly periodic struc-
tures with physical parameters modulated in space
(‘‘modulated’’ systems), such as, for example, layered
crystals. Spatial periodicity leads to a band-gap structure
of the spectrum of linear waves and to the existence of
the so-called ‘‘gap solitons’’ when the nonlinearity of the
medium is taken into account [1–3]. In this Letter, we
notice the existence of other gap solitons in systems with
spatially homogeneous material parameters but a spa-
tially periodic ground state, which can be investigated
exactly in the framework of integrable models. The peri-
odic fluxon lattice in a long Josephson junction in an
external field represents one example of such a system
[4–6]. The surface atomic layer in an incommensurate
state (see, for instance, [7–9]) is another important ex-
ample of similar ‘‘self-modulated’’ structure. In all these
cases, the spectrum of linear excitations also has a gap
structure but solitons with frequencies within a gap differ
from those in the modulated media. We investigate ana-
lytically one-parametric topological solitons (‘‘kinks’’)
[10] in the gap of the spectrum of incommensurate sur-
face structure using the Darboux transform (see, for
instance, [11]).

Let us consider, for example, an incommensurate
structure of the surface layer of atoms. We take into
account the interaction between surface atoms in the
harmonic approximation and assume that, in the absence
of a substrate, the equilibrium distance between these
atoms is equal to b and differs from the interatomic
distance a in a bulk. The influence of a substrate on
surface atoms can be simulated by a periodical potential
relief with period a. For simplicity, we approximate this
0031-9007=04=92(24)=244101(4)$22.50 
U �
X
n

U0�1� cos�2�yn=a�� �
X
n

��yn � yn�1 � b�2=2;

(1)

where yn is the position of nth atom with respect to the
surface layer and � is the elastic constant in the layer. The
dynamical equations for the atomic displacements vn �
yn � an in this Frenkel-Kontorova model [12] have the
following form:

mvn�� � �2�U0=a� sin�2�vn=a� �

��2vn � vn�1 � vn�1� � 0; (2)

where m is the mass of atom.
In the long-wave approximation for dimensionless

variables u � 2�v=a, x � n2�
������������
U0=�

p
=a, and t �

�2�
�������������
U0=m

p
=a, we come to the well-known sine-Gordon

equation (SGE) [10]:

utt � uxx � sinu � 0: (3)

In the same approximation the total energy of the
system (1) takes the form

U � E0

Z
dx�u2t =2� u2x=2� �1� cosu� � �ux�; (4)

where E0 � a
����������
�U0

p
=�2��, and the incommensurability

of the surface layer and substrate is characterized by the
dimensionless parameter � �

������������
�=U0

p
�a� b�. The last

term �ux in (4) has a divergent form and does not change
the form of Eq. (3) but changes the potential energy of the
system and can change its ground state. In the case b � a,
the ground state corresponds to the trivial solution of
Eq. (3), u 	 0with the energyE � 0. Under the condition
b � a, the problem becomes more complicated.

Let us consider the case b > a (� < 0) where Eq. (3)
allows additional nontrivial static solutions in the follow-
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where am�z; k� is the elliptic amplitude with modu-
lus k, and z � x=k. The solution (5) describes the ‘‘ex-
tended’’ system of a periodical chain of 2� kinks (‘‘one-
dimensional dislocations’’ in a surface layer or fluxon
lattice in a long Josephson junction) separated by the
distance L � 2kK�k�, where K�k� is the first type full
elliptic integral. The width of kink expressed in
terms of the initial dimensional variables is equal to
	 � a2

������������
�=U0

p
=�2��.

The energy density of such a periodical structure (per
period) " � U=L depends on the parameter of incom-
mensurability �. For small values of this parameter, the
ground state of the system is homogeneous and the peri-
odical solution (5) can exist only under pressure condi-
tions applied to the chain at the infinity. But when the
parameter � exceeds a critical value �c � �4=�, where
bc � a� �4=��

������������
U0=�

p
, the periodical state (5) with the

modulus of elliptic function, derived from the equation
E�k�=k � �=�c, corresponds to the minimum of energy
[E�k� is the second type full elliptic integral].

Linear excitations on the background of the incom-
mensurate structure (5) are well known [13]. They repre-
sent the high-frequency phonon mode in the layer (upper
band) and the low-frequency Swihart mode of oscilla-
tions of a kink lattice (lower band). Let us consider non-
linear excitations on this background. The elementary
nonlinear excitation corresponds to an additional kink
(surface dislocation) which propagates through the kink
lattice (5). To obtain the exact solution for this excitation,
we use the Darboux transform [11] which allows us to find
more complicated solutions if an initial (‘‘seed’’) solution
is known [here, solution (5)]. Using the so-called ‘‘dress-
ing’’ procedure for the initial solution u0�x� (5) and any
arbitrary real parameter of the Darboux transform � [11]
we obtain the new real solution u�x; t� describing the
motion of an additional kink in the following final form:

u�x; t� � u0�x� � 2i ln
�
exp�i��� � i exp�# � i���
exp��i��� � i exp�# � i���

�
;

(6)

where �
 � �’
 !�=2, tan�’� � dn�z; k�=�2k"�, " �



���������������������������������������
��� 1=��2 � 4=k2

p
=4, tan�!� � 2sn�z; k�cn�z; k�=

�2sn2�z; k� � �2 � 1�, and # � 2"�t� f�x��, with

f�x� � �k2=4���2 � 1=�2�
Z x

0
dx�dn2�z; k� � �2k"�2��1:

(7)

Positive" corresponds to a (0; 2�) additional kink, nega-
tive one to a (2�; 0) kink. The function �’
 !� can be
rewritten as �’
 !� � �am�z; k� 
 am�z
 �=k; k�,
where the phase shift � of the solution depends on the
parameters k and � in the following implicit form:
k sn��=k; k� � 2�=��2 � 1�.

In all above formulas we considered �0 < �<1,
where �0 � �1� k0�=k, k0 � �1� k2�1=2. This corre-
244101-2
sponds to a positive value of the function f, i.e., to the
kink motion in the negative direction. The domain 0<
�< �0 corresponds to the opposite direction of kink
motion. The function f�x� in (7) can be expressed as
f�x� � x=%� &�x�, where the average value of the peri-
odical function &�x� is equal to zero. The linear grow-
ing component of f�x� determines the average velocity
of a kink propagating through the incommensurate
structure :

h%i � 4K�k�
�
k2��2 � 1=�2�

�
Z K

0
dz�dn2�z; k� � �2k"�2��1

�
�1
: (8)

Consequently, the phase # � 2"�x� %t�=%� 2"&�x�
describes the kink motion in the negative direction with
the average velocity %. Such a motion is accompanied by
periodical oscillations at the moments when the kink
propagates through each kink of the lattice.

In spite of the complexity of the obtained solution (6),
it allows a simple physical interpretation. The additional
kink propagates through the incommensurate surface
structure, and this propagation is accompanied by the
total deformation with the phase shift 2�. In the limit
�! 1 the kink velocity tends to its maximum value
(%! 1) and the phase shift tends to zero (2� ! 0): the
singular additional kink moves through the undeformed
periodical structure. In the opposite limit �! �0 the
velocity of a kink tends to its minimal value s0 �
k0K�k�=E�k� which coincides with Swihart velocity, the
width of the kink goes to infinity, and the phase shift
tends to L: the perfect incommensurate structure rehabil-
itates itself. The solution (6) develops an evident form
in the limit k! 1. In this limit the period of the in-
commensurate structure tends to infinity (L! 1), and
the solution (6) describes the propagation of a moving
kink through another standing kink: the last term in (6)
transforms into the well-known expression for a moving
soliton

'u�x; t� � 
4 arctanexpf�x
 %t� (�x��=
��������������
1� %2

p
g; (9)

where (�x� is a localized function which describes the
deformation of a kink during its propagation through
the standing kink and depends on functions ’ and !.
The polarity of the kink and the sign of its velocity
depend on the sign of the parameter " and the value of
the parameter �.

The knowledge of the one-soliton solution (6) allows us
to find the exact solution for the envelope two-parametric
gap soliton. In addition, we can use the Backlund trans-
form for SGE (3). This dressing method establishes a link
between different solutions of a nonlinear evolution equa-
tion. At the second step of the Backlund transform we can
244101-2
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link four different solutions by the algebraic relation [10]:

u � u0 � 4 arctan

�
�1 � �2
�1 � �2

tan
u��1� � u��2�

4

�
; (10)

where the parameters of Backlund transform �1 and �2
are the same as the parameters � in the previous Darboux
transform.

In the simplest case of a trivial ground state u0 � 0 we
can choose in (10) the solutions for moving kink and
antikink u��1;2� � 
4 arctanexpb�x� %t�=

��������������
1� %2

p
c with

�1 � 1=�2 � �
����������������������������������
�1� %�=�1� %�

p
and opposite velocities

as u��1;2�. Then formula (10) represents a two-soliton
solution with an immobile center of masses. With i!
replacing % [�1 � ��2 � � exp��i!�], the solution
u�x; t� from (10) transforms into a breather solution with
the frequency !. In our problem we can carry out the
same procedure taking the incommensurate structure (5)
as the initial solution u0 in (10). Then the solution (6) with
� � �1 and " � "1 may be taken as u��1� in (10).
Another solution (6) with �2 � 1=�1 and "2 � �"1

may be taken as u��2�. After the substitution %! i!
[when �1 � ��2 � exp�i*� and the parameter " is purely
imaginary] we can obtain the final real solution for non-
linear excitations of the incommensurate surface struc-
ture. This solution has a very complicated form, but
allows a simple physical interpretation. The frequencies
of localized nonlinear excitations of the incommensurate
structure lie in the gap of the spectrum !1 <!<!2,
where the frequency !1 � k0=k corresponds to the upper
boundary of the Swihart band and the frequency !2 �
1=k corresponds to the lower boundary of the phonon
band. At the lower boundary of the gap this excitation
transforms into small-amplitude antiphase oscillations of
the kinks, which form the incommensurate structure. In
the vicinity of the frequency!1, the localized solitonlike
244101-3
small-amplitude excitations have the typical form of gap
solitons in modulated systems [1] and kinks play the role
of point defects in such a system. But transformation of
this gap soliton in the opposite limit !! !2 is unusual.
In modulated systems in this limit the domains between
defects oscillate in opposite directions and a gap soliton
transforms into an algebraic soliton with nonzero ampli-
tude. In our case of the ‘‘self-modulated’’ structure in the
limit !! !2 the gap soliton transforms into a small-
amplitude soliton with infinitely increasing spatial size.
But as in modulated systems, in this limit kinks are
unmovable and domains between them oscillate in oppo-
site directions. It also followed from the exact solution
that, in contrast to usual gap solitons in modulated sys-
tems as discussed above, solitons are accompanied by
nonzero shift of the kink structure at infinity.

The dynamics of gap solitons in the small-amplitude
limit !! !1 allows a simple analysis in the approach of
a collective-variable method. In this approach the isolated
kinks of the incommensurate structure with a large pe-
riod L� 1 (k0 � 1) can be treated as a lattice of weakly
interacting quasiparticles. The coordinates of these par-
ticles play the role of collective variables. From the well-
known expression [10] for the energy of the moving
SGE-kink E � 8E0=

����������������������
1� %2=c2

p
(where c �

���������������
�a2=m

p
is

the limiting velocity of linear waves), it is easy to calcu-
late the effective mass of a kink: M � 4m

������������
U0=�

p
=��a�.

An effective potential energy of the interaction of two
kinks with the same signs can be found from the exact
two-kink solution. Two kinks repel each other and the
energy of this repulsion is U� ~LL� � 32E0 exp�� ~LL=	�,
where ~LL is the distance between the kinks and 	 is their
width. If we define the coordinate of theNth kink as yN�
LN�-N , where L is the equilibrium distance between the
kinks and -N are their small displacements from the equi-
librium positions, the total energy of the system reads as
E �
X
N

fM�d-N=dt�
2=2� 32E0 exp��L=	�fexp���-N � -N�1�=	� � �-N � -N�1�=	gg; (11)
where the last term appears due to the incommensura-
bility of the structure and is connected with the last
term in (4). This energy corresponds to the exactly inte-
grable Toda model [10]. It is well known that the Toda
lattice allows exact solutions only for one-parameter non-
linear excitations which correspond to the above-
discussed kinks propagating through the kink lattice.
But it is possible to find approximate solutions for
small-amplitude periodical(in time) nonlinear excita-
tions using an asymptotical procedure. We restrict our-
selves to the small-amplitude approximation in which
�-N � -N�1� � 	. It is then possible to expand the ex-
ponential function in (11) up to a nonlinear term of the
fourth power in its argument. In this approach the dy-
namical equations for the effective chain of kinks have
the form
G�d2-N=dt2� � �2-N � -N�1 � -N�1�

� �1� �-N�1 � -N�1�=�2	� � �-2N � -2N�1 � -2N�1 � -N-N�1 � -N-N�1 � -N�1-N�1�=�6	
2�� � 0; (12)

where G � bM	2=�32E0�c exp�L=	� � 4=!2
1. Near the lower boundary of the gap (! � !1) the neighboring kinks

oscillate in opposite phases, and it is convenient to introduce the new variables -N � /N for even sites N � 2n and
-N � 0N for N � 2n� 1. In the long-wave approximation in terms of relative displacements of neighboring kinks P �
/� 0, displacements of their centers of masses Q � /� 0 and continuous coordinate Z � NL, Eq. (12) can be
244101-3
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reduced to the following system of equations:

GPtt � 4P� L2PZZ � 2P3=�3	2� � 2LPQZ=	 � 0;

(13)

GQtt � L2QZZ � 2LPPZ=	 � 0: (14)

Near the lower boundary of the gap where the value of
parameter �G!2 � 4��"2 is small ("� 1), we have in
the main approximation P�", Q�". In the ‘‘rotating
phase approximation’’ P � p�Z� sin�!t� it follows from
Eq. (14) that QZ � p2�Z�=�2L	� and the equation for
p�Z� reads

L2pZZ � 4pb�!=!1�
2 � 1c � p3=�2	2�: (15)

Under the gap, nonlinear excitations have the form of
‘‘dark antiphase solitons’’

P � 2
���
2

p
	

���������������������������
�!=!1�

2 � 1
q

� tanhb
���
2

p ����������������������������������
�!=!1�

2 � Z=L
q

c sin�!t�; (16)

which is accompanied by an extension of the kink lattice:
Q�
1� ! 4	��!=!1�

2 � 1�Z=L. These ‘‘out-gap soli-
tons’’ have a structure different from that for out-gap
solitons in modulated structures.

In the gap, the soliton solution has another form:

P � 4	" sinh�1�2"Z=L� sin�!t�;

Q � �4	" coth�2"Z=L�;
(17)

where " �
���������������������������
�!=!1�

2 � 1
p

. As predicted by the exact so-
lution of the problem, the solitonlike excitations in the
gap of the spectrum are accompanied by the total shift of
the kinks displacements at infinity. Taking into account
the discreteness of Eq. (12) and the initial problem for the
kink lattice, we must take Z=L � N � 1=2 to avoid a
singularity in the center of this gap soliton.

In conclusion, we note that the investigation of the
problem was performed within the continuum approxi-
mation. The discreteness of the system and the existence
of the Pierls relief can essentially change the dynamics of
the system. But the gap character of the spectrum of
linear waves of the ‘‘self-modulated’’ system and the
unusual properties of gap solitons in such system shall
be kept.
244101-4
Finally, we studied analytically the nonlinear dynam-
ics of the incommensurate structure of a surface atomic
layer with a spatially periodic ground state. The nonlinear
excitations of the periodic soliton lattice (moving addi-
tional kinks and gap solitons) were investigated in the
framework of the Frenkel-Kontorova model. The results
can be of importance for the description of a fluxon lattice
in a long Josephson junction in an external magnetic field
(essentially continuous system). We think that the non-
linear excitations of incommensurate surface structure
discussed above may be detected experimentally if
the wave with frequency in the gap of the spectrum
will be excited near the surface.
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