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We sum up the next-to-leading logarithmic corrections to the heavy-quarkonium hyperfine splitting,
using the nonrelativistic renormalization group. On the basis of this result, we predict the mass of the �b
meson to be M��b� � 9421� 11�th��9�8���s� MeV. The experimental measurement of M��b� with a few
MeV error would be sufficient to determine �s�MZ� with an accuracy of �0:003. For the hyperfine
splitting in charmonium, the use of the nonrelativistic renormalization group brings the perturbative
prediction significantly closer to the experimental figure.
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the next-to-leading logarithmic (NLL) approximation, scales and reveal themselves as the singularities of the
The theoretical study of nonrelativistic heavy-quark-
antiquark systems is among the earliest applications of
perturbative quantum chromodynamics (QCD) [1] and
has by now become a classical problem. Its applications to
bottomonium or toponium physics entirely rely on the
first principles of QCD. This makes heavy-quark-anti-
quark systems an ideal laboratory to determine funda-
mental parameters of QCD, such as the strong-coupling
constant �s and the heavy-quark masses mq. Besides its
phenomenological importance, the heavy-quarkonium
system is also very interesting from the theoretical point
of view because it possesses highly sophisticated multi-
scale dynamics, and its study demands the full power of
the effective-field-theory approach. The properties of the

 mesons, the bottom quark-antiquark spin-one bound
states, are measured experimentally with great precision,
and recent theoretical analysis of the 
 family based on
high-order perturbative calculations resulted in determi-
nations of the bottom-quark mass mb with unprecedented
accuracy [2–4]. In contrast to the 
 family, the current
experimental situation with the spin-zero �b meson is
rather uncertain [5]. Yet, the discovery of the �b meson is
one of the primary goals of the CLEO-c research program
[6]. An accurate prediction of its mass M��b� is thus a big
challenge and a test for the QCD theory of heavy quar-
konium. Moreover, the hyperfine splitting (HFS) of the
bottomonium ground state, EHFS � M�
�1S���M��b�,
is very sensitive to �s and, with the advancement of the
experimental measurements, could become a competitive
source for the determination of �s.

The HFS in quarkonium has been a subject of several
theoretical researches [7]. To our knowledge, the next-to-
leading order (NLO) O��s� correction is currently known
in a closed analytical form only for the ground state HFS
[4]. In this Letter, we generalize this result to the excited
states and present the analytical renormalization-group-
improved expression for the heavy-quarkonium HFS in
0031-9007=04=92(24)=242001(4)$22.50
which sums up all the corrections of the form
�n
s ln

n�1�s. We apply it to predict M��b�, which could
be used for extracting �s from future experimental data
on the �b.

The leading-order (LO) result for the HFS is propor-
tional to the fourth power of �s, ELOHFS � C4F�

4
s���mq=

�3n3�, where CF � �N2c � 1�=�2Nc�, and suffers from a
strong dependence on the renormalization scale � of
�s���, which essentially limits the numerical accuracy
of the approximation. Thus, the proper fixing of � is
mandatory for the HFS phenomenology. The scale depen-
dence of a finite-order result is canceled against the
higher-order logarithmic contributions proportional to a
power of ln��= ����, where ��� is a dynamical scale of the
nonrelativistic bound-state problem. The physical choice
of the scale � � ��� eliminates these potentially large
logarithmic terms and a priori minimizes the scale de-
pendence. However, the dynamics of the nonrelativistic
bound state is characterized by three well-separated
scales: the hard scale of the heavy-quark mass mq, the
soft scale of the bound-state momentum vmq, and the
ultrasoft scale of the bound-state energy v2mq, where v /
�s is the velocity of the heavy quark inside the approxi-
mately Coulombic bound state. To make the procedure of
scale fixing self-consistent, one has to resum to all orders
the large logarithms of the scale ratios characteristic for
the nonrelativistic bound-state problem. The resummation
of the logarithmic corrections requires an appropriate
conceptual framework. The effective field theory [8] is
now recognized as a powerful tool for the analysis of
multiscale systems, which is at the heart of the recent
progress in the perturbative QCD bound-state calcula-
tions. The main idea of this method is to decompose the
complicated multiscale problem into a sequence of sim-
pler problems, each involving a smaller number of scales.
The logarithmic corrections originate from logarithmic
integrals over virtual momenta ranging between the
 2004 The American Physical Society 242001-1
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effective-theory couplings. The renormalization of these
singularities allows one to derive the equations of the
nonrelativistic renormalization group (NRG), which de-
scribe the running of the effective-theory couplings, i.e.,
their dependence on the effective-theory cutoffs. The
solution of these equations sums up the logarithms of
the scale ratios. To derive the NRG equations necessary
for the NLL analysis of the HFS, we rely on the method
based on the formulation of the nonrelativistic effective
theory known as potential nonrelativistic QCD
(pNRQCD) [9]. The method was developed in Ref. [10]
where, in particular, the leading logarithmic (LL) result
for the HFS has been obtained (see also Ref. [11]). A
characteristic feature of the NRG is the correlation of
the dynamical scales, which leads to the correlation of the
cutoffs [12]. For perturbative calculations within the
effective theory, dimensional regularization is used to
handle the divergences, and the formal expressions de-
rived from the Feynman rules of the effective theory are
understood in the sense of the threshold expansion [13].
This approach [14–17] possesses two crucial virtues: the
absence of additional regulator scales and the automatic
matching of the contributions from different scales.

Let us give a few details of the NLL analysis. We
distinguish the soft, potential, and ultrasoft anomalous
dimensions corresponding to the ultraviolet divergences
of the soft, potential, and ultrasoft regions [13]. The LL
approximation is determined by the one-loop soft run-
ning of the effective Fermi coupling cF and the spin-flip
four-quark operator [10]. In the NLL approximation, all
three types of running contribute. We need the two-loop
soft running of cF, which is known [18], and the two-loop
242001-2
soft running of the spin-flip four-quark operator, which
we compute by adopting the technique used in Ref. [14]
for the calculation of the two-loop 1=�mqr2� non-Abelian
potential. To compute the potential running, we inspect
all operators that lead to spin-dependent ultraviolet diver-
gences in the time-independent perturbation theory con-
tribution with one and two potential loops [10,19]. They
include (i) the O�v2; �sv� operators [2,7], (ii) the tree
O�v4� operators, some of which can be checked against
the QED analysis [16], and (iii) the one-loop O��sv

3�
operators, for which only the Abelian parts are known
[16], while the non-Abelian parts are new. In the NLL
approximation, we need the LL soft and ultrasoft running
of the O�v2� and O�v4� operators, which enter the two-
loop time-independent perturbation theory diagrams, and
the NLL soft and ultrasoft running of the O��sv� and
O��sv

3� operators, which contribute at one-loop. The
running of the O�v2; �sv� operators is already known
within pNRQCD [10]. The running of the other operators
is new. For some of them, it can be obtained using
reparametrization invariance [20].

Besides the running discussed above, we need the
initial conditions for the NRG evolution given by the
known one-loop result [7]. With the anomalous dimen-
sions and initial conditions at hand, it is straightforward
to solve the system of the nonlinear differential equations
for the effective couplings and get the NLL result for the
HFS. The corresponding expression for general color
(light-flavor) number Nc (nl) and for arbitrary principal
quantum number n is too lengthy to be shown in this
Letter, so we present the explicit analytical expression
only for Nc � 3, nl � 4, and n � 1, which applies to the
bottomonium ground state. It reads
ENLLHFS �
C4F�
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where �s is renormalized in theMS scheme, y � �s���=�s�mb�, ��� � CF�s���mb, 2F1�a; b; c; z� is the hypergeometric
function, and 2F1�1; 1; 82=25;�1� � 0:787 507 8 . . . . By expanding the resummed expression up to O��2s�, we get
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where �s 
 �s���, � � ���=n, CA � Nc, TF � 1=2, �i
is the �i� 1�-loop coefficient of the QCD � function
(�0 � 11CA=3� 4TFnl=3; . . . ), Ln�s

� ln�CF�s=n�,
�n�x� � dn ln��x�=dxn, ��x� is Euler’s � function, and
�E � 0:577 216 . . . is Euler’s constant. In Eq. (2), we keep
the full dependence on Nc, nl, and n. The O��2s ln2�s�
term is known [10,11], while the O��2s ln�s� term is new.

For the numerical estimates, we adopt the following
strategy.We take mb � M�
�1S��=2, which is sufficient at
the order of interest. Furthermore, we take �s�MZ� as an
input and run with four-loop accuracy down to the match-
ing scale mb to ensure the best precision. Below the
matching scale, the running of �s is used according to
the logarithmic precision of the calculation in order not to
include next-to-next-to-leading logarithms in our analy-
sis. In Fig. 1, the HFS for the bottomonium ground state is
plotted as a function of � in the LO, NLO, LL, and NLL
approximations. As we see, the LL curve shows a weaker
scale dependence compared to the LO one. The scale
dependence of the NLO and NLL expressions is further
reduced, and, moreover, the NLL approximation remains
stable up to smaller scales than the fixed-order calcula-
tion. At the scale �0 � 1:3 GeV, which is close to the
inverse Bohr radius, the NLL correction vanishes.
Furthermore, at �00 � 1:5 GeV, where �LLs � 0:319, the
result becomes independent of �; i.e., the NLL curve
shows a local maximum. This suggests a nice conver-
gence of the logarithmic expansion despite the presence
of the ultrasoft contribution with �s normalized at the
rather low scale ���2=mb 
 0:8 GeV. By taking the differ-
ence of the NLL and LL results at the local maxima as a
conservative estimate of the error due to uncalculated
higher-order contributions, we get EHFS � 39� 8 MeV.
A similar error estimate is obtained by the variation of
the normalization scale in the physically motivated soft
region 1–3 GeV.

So far, we have only discussed the perturbative contri-
butions to the HFS. The nonperturbative ones are in
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FIG. 1 (color online). HFS of 1S bottomonium as a function
of the renormalization scale � in the LO (dotted line), NLO
(dashed line), LL (dot-dashed line), and NLL (solid line)
approximations. For the NLL result, the band reflects the errors
due to �s�MZ� � 0:118� 0:003.
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general given by the convolution of a quantum-mechani-
cal Green function with a nonlocal nonperturbative
gluonic correlator [21]. In the limit �2smq �  QCD, it
can be investigated by the method of vacuum condensate
expansion [22]. The resulting series, however, is not ex-
pected to converge well in our case and suffers from large
numerical uncertainties [23]. In any case, within the
power counting assumed in this Letter, these nonpertur-
bative effects are beyond the accuracy of our computation
and should be added to the errors. One way to estimate
them is by considering the HFS in the charmonium
system, where experimental data are available. The result
of our analysis is given in Fig. 2 along with the experi-
mental value 117:7� 1:3 MeV [24]. The local maximum
of the NLL curve corresponds to EHFS � 104 MeV and
�LLs � 0:534. We should emphasize the crucial role of the
resummation to bring the perturbative prediction closer
to the experimental figure. Note also that the recent
lattice estimates undershoot the experimental value by
20–30% [25]. For an estimate, we attribute the whole
difference of � 14 MeV to the nonperturbative effects.
Taking into account that they are suppressed by the
inverse heavy-quark mass at least as 1=��smq�

2 [22], we
obtain � 3:5 MeV for the typical size of the nonpertur-
bative contribution to the HFS in bottomonium. For the
estimate of the nonperturbative error, we multiply this
number by two.

Our prediction for the bottomonium HFS can be com-
pared with those obtained either on the lattice [26] or with
potential models (for a recent discussion see Ref. [27],
and references therein). It seems to be a general trend that
our result is larger than the lattice predictions and smaller
than most of the potential model results.

To conclude, we have computed the heavy-quarkonium
HFS in the NLL approximation by summing up the
subleading logarithms of �s to all orders in the perturba-
tive expansion. The use of the NRG extends the range of�
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FIG. 2 (color online). HFS of 1S charmonium as a function of
the renormalization scale � in the LO (dotted line), NLO
(dashed line), LL (dot-dashed line), and NLL (solid line)
approximations. For the NLL result, the band reflects the errors
due to �s�MZ� � 0:118� 0:003. The horizontal band gives the
experimental value 117:7� 1:3 MeV [24].
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where the perturbative result is stable to the physical scale
of the inverse Bohr radius. We found the resummation of
logarithms to be crucial to bring the perturbative pre-
diction closer to the experimental figure of the HFS in
charmonium despite a priori unsuppressed nonperturba-
tive effects. Our results further indicate that the proper-
ties of the physical charmonium and bottomonium
ground states are dictated by perturbative dynamics. As
an application of the result to the bottomonium spectrum,
we predict the mass of the as yet undiscovered �b meson
to be

M��b� � 9421� 11�th��9�8���s� MeV; (3)

where the errors due to the high-order perturbative cor-
rections and the nonperturbative effects are added up in
quadrature in ‘‘th,’’ whereas ‘‘��s’’ stands for the uncer-
tainty in �s�MZ� � 0:118� 0:003. If the experimental
error in future measurements of M��b� will not exceed a
few MeV, the bottomonium HFS will become a competi-
tive source of �s�MZ� with an estimated accuracy of
�0:003, as can be seen in Fig. 1.
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