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Using supernova, cosmic microwave background, and galaxy clustering data, we make the most
accurate measurements to date of the dark energy density �X as a function of cosmic time, constraining
it in a rather model-independent way, assuming a flat universe. We find that Einstein’s simplest scenario,
where �X�z� is constant, remains consistent with these new tight constraints and that a big crunch or big
rip is more than 50 Gyr away for a broader class of models allowing such cataclysmic events. We discuss
popular pitfalls and hidden priors.
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in the recent literature, we focus on measuring the func- �m�1 	 z� D � 0, where primes denote d=d�H0t�.
The nature of dark energy has emerged as one of
the deepest mysteries in physics. When strong evidence
for its existence first appeared from supernova observa-
tions in 1998 [1,2], the most pressing question was
whether it was real or an observational artifact. Since
then, the supernova evidence has both withstood the test
of time and strengthened [3–5], and two other lines of
evidence have independently led to the same conclusion:
measurements of cosmological clustering with the cosmic
microwave background (CMB) and large-scale struc-
ture (LSS) (e.g., [6,7]) and observation of CMB/LSS
correlations due to the late integrated Sachs-Wolfe
effect [8]. Now that its current density has been accu-
rately measured [Wilkinson Microwave Anisotropy
Probe+Sloan Digital Sky Survey gives �X�0� �
�4:8 � 1:2� � 10�27 kg=m3 [7], corresponding to �9:3 �
2:3� � 10�124 in Planck units and � � 0:7], the next
pressing question is clearly whether its density �X stays
constant over time (like Einstein’s cosmological con-
stant) or varies. The latter is predicted by most models
attempting to explain dark energy either as a dynamic
substance,‘‘quintessence’’ (e.g., [9]), or via some form of
modified gravitational theory, perhaps related to extra
dimensions or string physics (e.g., [10]). See Ref. [11]
for reviews with more complete lists of references.

The recent discovery of 16 type Ia supernovae (SNe Ia)
[5] with the Hubble space telescope during the Great
Observatories Origins Deep Survey Advanced Camera
for Surveys Treasury survey bears directly on this ques-
tion. By discovering six out of the seven highest redshift
SNe Ia known, all at z > 1:25, this search team [5] was
able to pinpoint for the first time the transition epoch
from matter domination to dark energy domination when
the cosmic expansion began to accelerate. It is therefore
timely to revisit this question regarding if and how the
dark energy density varies with time. This is the goal of
the present Letter. Given our profound lack of understand-
ing of dark energy and the profusion of theoretical models
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tion �X�z� in as model independent a fashion as possible,
emphasizing what we do and do not know given various
assumptions about how �X�z� is parametrized, about data
sets used, and about modeling thereof.We will see that the
new data are powerful enough to make previous measure-
ments of �X�z� (e.g., [12–14]) tighter and more robust and
also to extend them back firmly into the epoch of cosmic
deceleration.

Analysis technique.—We wish to measure the dimen-
sionless dark energy function, X�z� � �X�z�=�X�0�, the
dark energy density in units of its present value. We do
this as described in Ref. [13], fitting to SN Ia, CMB, and
LSS information, obtaining the results shown in Fig. 1.

The measured distance-redshift relations of SNe Ia
provide the foundation for probing the dark energy
function X�z�. In a flat universe, the dimensionless lumi-
nosity distance dL�z�H0=c � �1 	 z���z�, where ��z� �R
z
0 dz

0=E�z0� is the dimensionless comoving distance and

E�z� � ��m�1 	 z�3 	 �1 � �m�X�z��1=2 (1)

is the cosmic expansion rate relative to its present value.
We use the ‘‘gold’’ set of 157 SNe Ia published by Riess
et al. in Ref. [5] and analyze it using flux-averaging
statistics [13,15] to reduce bias due to weak gravitational
lensing by intervening matter. We assume spatial flatness
as motivated by inflation and discuss the importance of
this and other assumptions below. We use CMB and LSS
data to help break the degeneracy between the dark en-
ergy function X�z� and �m. For the CMB, we use only the
measurement of the CMB shift parameter [16], R �
�1=2
m ��zCMB� � 1:716 � 0:062 from CMB (WMAP, CBI,

ACBAR) [6,17], where zCMB � 1089. The only large-
scale structure information we use is the linear growth
rate f�z2df� � 0:51 � 0:11 measured by the 2 degree field
(2dF) galaxy redshift survey (2dFGRS) [3,18], where
z2df � 0:15 is the effective redshift of this survey and f �
�d lnD=d lna� is determined by solving the equation
for the linear growth rate D, D00��� 	 2E�z�D0��� �
3
2

3
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FIG. 1 (color online). 1� constraints on the density of matter
and dark energy from SN Ia (Riess sample, flux averaged with
�z � 0:05), CMB, and LSS data, all in units of the current
dark energy density. From inside out, the four nested dark
energy constraints are for models making increasingly strong
assumptions, corresponding, respectively, to the four-parame-
ter spline, the three-parameter spline, the two-parameter
�f1; wi� case, and the one-parameter constant w case (hatched
area). The Universe starts accelerating when the total density
slope d ln�=d ln�1 	 z� > �2, which roughly corresponds to
when dark energy begins to dominate, i.e., to where the
matter and dark energy bands cross. In the distant future,
the Universe recollapses if the dark energy density �X goes
negative and ends in a ‘‘big rip’’ if it keeps growing
[d ln�X=d ln�1 	 z�< 0].
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Note that the CMB and LSS measurements we use (R and
f) do not depend on the Hubble parameter H0 and are
quite insensitive to assumptions made about X�z�. The SN
Ia measurements used are also independent of H0, since
we marginalize them over the intrinsic SN Ia luminosity
calibration.

We run a Monte Carlo Markov chain (MCMC) based
on the MCMC engine of Ref. [19] to obtain a few million
samples of �m and X�z�. The dark energy bands in Fig. 1
correspond to the central 68% of the X values at each z
and the matter band does the same for �m�z�=�X�0� �
�1 	 z�3�m=�1 � �m�.

Results.—Figure 1 shows our main results, the con-
straints on the dark energy function X�z� � �X�z�=�X�0�
for four different parametrizations, and illustrates that
the assumptions one makes about the curve X�z� have an
important effect on the results. The most common way of
measuring dark energy properties in the literature has
TABLE I. Parametrizations used for the dark energy function X �

Parametrization n Parameters

A) Constant equation of state w 1 w
B) Affine w�z� 2 w0, w0

0

C) Affine w�a� 2 w1, wa
D) Forever regular 2 wi, f1
E) 3-parameter spline 3 wi, X�z1�, X�z2� Cubic
F) 4-parameter spline 4 wi, X�z1�, X�z2�, X�z3� Cubic
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been to parametrize the dark energy function X by merely
one or two free parameters, constraining these by fitting
to observed data. Table I includes the historically most
popular parametrizations, expressed as functions of the
dimensionless cosmic scale factor a � �1 	 z��1.
Parametrization A simply assumes that X�a� is a power
law, with the single equation-of-state parameter w
determining its logarithmic slope. From the identity
@ ln�X=@ lna � �3�1 	 wx�, it follows that parametriza-
tion B corresponds to the popular parametrization
wx�z� � w0 	 w0

0z [20], which has been widely used in
the literature. It has the drawback of being rather unphys-
ical for w0

0 > 0, with the dark energy density �X�z� blow-
ing up as e3w

0
0z at high redshift. Parametrization C avoids

this [21] and corresponds to wx � w1 	 wa�1 � a�,
but blows up exponentially in the future as a! 1 for
wa > 0. In contrast, our parametrization D remains well
behaved at all times: both early on and in the distant
future, the dark energy approaches either a constant
equation of state wi or a constant density, depending on
the sign of �1 	 wi�.

Obviously, the more restrictive the assumptions about X
are, the stronger the nominal constraints will be, so it is
crucial to be clear on what these assumptions are. For
instance, Table I shows that parametrizations A, B, and C
all tacitly assume that X�z� � 0, i.e., that the dark energy
density cannot be negative, hence ruling out by fiat the
possibility that the Universe can recollapse in a big
crunch. Note that even arbitrary function w�z� has this
hidden assumption built in. Many scalar field models
indeed prohibit the dark energy density from being nega-
tive, as well as predicting that X0�a� � 0, since fields
usually roll down potentials, not up. However, we wish
to avoid such theoretical prejudice, since ‘‘dark energy’’
could be a manifestation of something completely differ-
ent, such as modified gravity [10].

To minimize such theoretical bias, we use parametri-
zations E and F from Table I; these are fairly model-
independent reconstructions of the dark energy function
X�z�, assuming merely that X�z� is a sufficiently smooth
function that it can be modeled with a cubic spline out to
some redshift zmax and by a constant-w power law there-
after. We choose zmax to avoid sparse SN Ia data and
parametrize X by its values at N equispaced spline points
at zmax=N, 2zmax =N; . . . ; zmax . X�z� is matched smoothly
on to �1 	 z�3�1	wi� at z > zmax. This specifies X�z�
uniquely once we require X�z� and X0�z� to be everywhere
�X�z�=��0� in terms of the cosmic scale factor a � �1 	 z��1.

Definition

X � a�3�1	w�

X � a�3�1	w0�w
0
0�e3w

0
0�a

�1�1�

X � a�3�1	w1	wa�e3wa�a�1�

X � f1 	 �1 � f1�a�3�1	wi�

spline in z for z � z2, X � X�z2���1 	 z�=�1 	 z2��3�1	wi� for z � z2
spline in z for z � z3, X � X�z3���1 	 z�=�1 	 z3��3�1	wi� for z � z3
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continuous and set X�0� � 1, X0�0� � �X�z1� � 1�=z1. We
choose zmax � 1:4, as there are only two SNe Ia at higher
redshifts. Since X�z� is only very weakly constrained
beyond z > zmax, we impose a prior of wi � �2 to avoid
an unbounded parameter space. Changing the prior to
wi � �20 or changing the functional form of X�z� at z >
zmax (to an exponential, for example) has little impact on
the reconstructed X�z�. We also find our results to be
rather robust to data details. Including the ‘‘silver’’
sample from Ref. [5] does not change our results quali-
tatively, and replacing the CMB shift parameter we
used (R � 1:716 � 0:062) by R � 1:710 � 0:137 (from
WMAP data alone [6]) broadens the 68% confidence
envelope by less than 20%.

Figure 1 also shows the constraints on the dark energy
function X�z� corresponding to parametrizations A andD
from Table I, imposing the priors wi � �2 and f1 � 0
for D. For comparison with the results of Ref. [5], we also
studied parametrization B, with a weak prior w0

0 � �20
to avoid an unbounded parameter space (MCMC tacitly
assumes uniform prior on the parameters, so if the pa-
rameter space is unbounded, the MCMC will drift off in
the unbounded direction and never converge).

As has been emphasized [22–24], SN Ia data are sen-
sitive only to the smooth, overall shape of X�z�. This is
because the error bars on sharp features on a scale �z are
proportional to ��z��3=2 due to the derivative involved in
going from comoving distance r�z� to dark energy func-
tion X [23]; reconstructing wX�z� is still harder, the
requirement that one effectively take the second deriva-
tive of noisy data [14] giving the error scaling as ��z��5=2

[23]. Figure 1 shows that as we allow more small-scale
freedom by parametrizing X�z� by one, two, three, and
four parameters, the allowed bands become thicker.
However, the broader bands generally encompass the
narrower ones, showing no hint in the data that the true
X�z� has funny features outside of the one- and two-
parameter model families. Indeed, all bands are seen to
be consistent with the simplest model of all: the 0-pa-
rameter ‘‘vanilla’’ model X�z� � 1 corresponding to
Einstein’s cosmological constant.

In other words, faced with the fact that an analysis
using parametrization A implies w � �1 (we obtain w �
�0:91	0:13

�0:15 combining SN Ia, CMB, and LSS), readers
hoping for something more interesting than vanilla may
correctly argue that these constraints are dominated by
accurate measurements at lower redshift and may fail to
reveal hints of an upturn in X�z� at z * 1 because pa-
rametrization A incorrectly assumes that �loga; logX� is a
straight line. Our more general parametrizations close
this loophole by allowing X�z� much greater freedom,
and the fact that none of them provide any hint yet of
nonvanilla dark energy behavior therefore substantially
strengthens the case for a simple cosmological constant,
X�z� � 1.

What is the ultimate fate of the Universe? If for any of
our models �X eventually goes negative so that total
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density drops to zero at some time tturn, then the expansion
reverses and a big crunch occurs at t � 2tturn; this applies
only if X is uniquely determined by the cosmic scale
factor (equivalently z) as in Table I and not for many
scalar field models [25]. The cosmic time t �

R
da= _aa �R

H�1d lna, and if this asymptotes to a finite value as a!
1, then a cataclysmic big rip [26] occurs at this time. This
is equivalent to w�z�<�1 at z � �1, so parametriza-
tions A, B, and C rip if w<�1, w0 � w

0
0 <�1, and

wa > 0, respectively.
Predictions for the future need to be taken with a large

grain of salt, since they are obviously highly model
dependent. For instance, parametrizations A, B, and C
cannot crunch, whereas E and F cannot rip. Simply
combining all MCMC models from all our parametriza-
tions, we find that 95% of them last at least another
49 Gyr, 25% ending in a big crunch, 8% ending in a big
rip, and 67% quietly expanding forever.

Caveats and potential pitfalls.—When interpreting
dark energy constraints such as those that we have pre-
sented, two crucial caveats must be borne in mind: po-
tential SN Ia systematic errors and potential false
assumption about other physics. We refer the reader to
Refs. [3,5] for thorough discussions of the former and
focus on the latter.

The SN Ia, CMB, and LSS measurements we have used
involve only X�z�, �m, and �tot. Because of degeneracies
between these three quantities, the inferences about X�z�
therefore depend strongly on the assumptions about the
two cosmological parameters �m and �tot. Yet it is all too
common to constrain dark energy properties using prior
information about �m and �tot that, in turn, hinges on
assumptions about the dark energy, usually the vanilla
assumption X�z� � 1, a pitfall emphasized by, e.g., [24].

We have assumed flat space, �tot � 1, as have virtually
all recent publications measuring dark energy properties
(usually using parametrizations A, B, or C). It is well
known that this assumption is crucial: introducing �tot as
a free parameter to be marginalized over has such a
dramatic effect on luminosity distances that essentially
no interesting constraints can be placed on X�z� at the
present time, not even assuming the highly restrictive
parametrization A.

We now turn to the issue of dark energy independent
constraints on �m. As emphasized by Ref. [24], assump-
tions about �m make a crucial difference as well. As an
example, Fig. 2 shows the constraints on �w0; w

0
0� for

parametrization B. The left panel illustrates that the
constraints from SN Ia alone are much weaker than those
obtained by imposing a strong prior �m � 0:27 � 0:04 as
was done in Fig. 10 of Ref. [5]. Although this prior
coincides with the measurement of �m from WMAP
and 2dFGRS [6], it should not be used here since it
assumes X�z� � 1. The right panel in Fig. 2 shows the
effect of including CMB information self-consistently
(via the R parameter) in our constraints. We see that w0

values as low as �3 remain allowed, as expected given
241302-3



FIG. 2 (color online). How constraints on w0 and w0
0 depend

on assumptions and data used. Darker shaded regions are ruled
out at 95% confidence by SNe Ia alone; lighter shaded regions
are ruled out when adding other information as indicated. 68%
contours are dotted. Models above the dotted line end in a big
rip. The 157 SNe Ia (Riess sample) have been flux averaged with
�z � 0:05.
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the above-mentioned weak �m constraints, and that addi-
tional information (in this case from LSS) is needed to
tighten things up. This panel also illustrates the hazard of
poor dark energy parametrizations: the seemingly im-
pressive upper limit on w0

0 tells us nothing whatsoever
about dark energy properties via SN Ia but merely reflects
that the unphysical exponential blowup X / e3w

0
0z would

violate the CMB constraint.
Conclusions.—In conclusion, we have reported the

most accurate measurements to date of the dark energy
density �X as a function of time, assuming a flat universe.
We have found that, in spite of their constraining power,
the spectacular new high-z supernova measurements of
Ref. [5] provide no hints of departures from the vanilla
model corresponding to Einstein’s cosmological constant.
This is good news in the sense of simplifying the rest of
cosmology but dims the prospects that nature will give us
quantitative clues about the true nature of dark energy by
revealing nonvanilla behavior. The apparent constancy of
�X�z� also makes attempts to explain away dark energy by
blaming systematic errors appear increasingly contrived,
further strengthening the evidence that dark energy is
real and hence a worthy subject of study. Future experi-
ments [27] can dramatically shrink the error bars in Fig. 1
and, therefore, hold great promise for illuminating the
nature of dark energy.

A Fortran code is available [28] that uses flux-averag-
ing statistics to compute the likelihood of an arbitrary
dark energy model (given the SN Ia data from Ref. [5]).
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