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Finding the mean of the total number Ntot of stationary points for N-dimensional random energy
landscapes is reduced to averaging the absolute value of the characteristic polynomial of the
corresponding Hessian. For any finite N we provide the exact solution to the problem for a class of
landscapes corresponding to the ‘‘toy model’’ of manifolds in a random environment. For N � 1 our
asymptotic analysis reveals a phase transition at some critical value �c of a control parameter � from a
phase with a finite landscape complexity: Ntot � eN�, ���<�c� > 0 to the phase with vanishing
complexity: ��� > �c� � 0. Finally, we discuss a method of dealing with the modulus of the spectral
determinant applicable to a broad class of problems.
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glassy behavior at low enough temperatures—an unusual
off-equilibrium relaxation dynamics attributed to a com-

where ��x� and �mn stand for the Dirac’s � function and
Kroneker symbol, respectively.
Characterizing geometry of a complicated landscape
described by a random function H of N real variables
x � �x1; :::; xN� is an important problem motivated by
numerous applications in physics, image processing, and
other fields of applied mathematics [1]. The simplest, yet
nontrivial task [2–6], is to find the mean number of all
stationary points of H (minima, maxima, and saddles)
in a given domain of the Euclidean space by investigating
the simultaneous stationarity conditions @kH � 0 for all
k � 1; :::; N, with @k standing for the partial derivative
@=@xk. In this context the function

H �
�
2

XN
k�1

x2k � V�x1; . . . ; xN�; (1)

given by the sum of a purely deterministic quadratic piece
characterized by a non-negative parameter � � 0 and of
a random Gaussian function V�x�, attracted considerable
interest for several independent reasons. For small N �
1; 2 statistics of stationary points of (1) were investigated
long ago in a classical study of specular light reflection
from a random sea surface [2] and addressed several
times since in various physical contexts; see [3,4]. Most
frequently one assumes the Gaussian part to be isotropic
with zero mean and correlations depending only on the
Euclidean distance jx1 	 x2j

2 �
PN
k�1�x1k 	 x2k�2 and

given by

hV�x1�V�x2�i � N f
�
1

2N
jx1 	 x2j

2

�
; (2)

with the brackets standing for the ensemble average.
Recently much interest in Eq. (1) was boosted by

reinterpreting it as the energy functional of a certain
‘‘toy’’ model describing elastic manifolds propagating
in a random potential; see [7,8], and references therein.
This type of model is known to display a very nontrivial
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plex structure of their energy landscape. Although par-
ticular dynamical as well as statical properties may differ
substantially for different functions f�x� (e.g., ‘‘long-
range’’ vs ‘‘short-range’’ correlated potentials; see [8]),
the very fact of glassy relaxation is common to all of
them. In fact, the same model admits an alternative
interpretation as a spin glass, with xi being looked at as
‘‘soft spins’’ in a quadratic well interacting via a random
potential V [7]. From this point of view it is most inter-
esting to concentrate on the limit of a large number of
‘‘spins,’’ N � 1. The experience accumulated from
working with various types of spin-glass models [5]
suggests that, for the energy landscape to be complex
enough to induce a glassy behavior the total number of
stationary points Ntot��� should grow exponentially with
N as Ntot��� � expN����. The quantity ���� > 0 in
such a context is natural to call the landscape complexity.
On the other hand, it is completely clear that the number
of stationary points should tend to Ntot � 1 for very large
� when the random part is negligible in comparison with
the deterministic one. In fact, when N ! 1 we will find
that a kind of sharp transition to the phase with vanishing
complexity occurs at some finite critical value �c, so that
���� � 0 as long as � > �c, whereas ���� > 0 for �<
�c and tends to zero quadratically when � ! �c. Such a
transition is just the glass transition observed earlier in a
framework of a different approach in [7,8].

We start with writing the number of stationary points
of H in any spatial domain D as N�D�

tot �
R
D ��x� d

Nx,
with ��x� being the corresponding density of the sta-
tionary points. The ensemble-averaged value of such a
density can be found as

�av�x� �

*
j det���k1;k2 � @2k1;k2V�j

YN
k�1

���xk � @kV�

+
;
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To evaluate the ensemble average we notice that for
the Gaussian potential V the first derivatives @kV
are Gaussian distributed and are locally statistically in-
dependent of the second derivatives. Representing the �
functions as Fourier integrals and exploiting h@mV@nVi �
a2�mn, a2 � 	f0�0� one can easily perform the corre-
sponding part of the averaging and arrive at

�av�x� �
1

�
							
2�

p
a�N

e	��2 x2=2a2�hj det���k1;k2 �Hk1k2�ji;

(3)

where we introduced the matrix of second derivatives of
the potential Hk1k2 � @2k1;k2V. Further changing H ! 	H
we see that the problem basically amounts to evaluating
the ensemble average of the absolute value of the charac-
teristic polynomial det��IN 	H� (also known as spectral
determinant) of a particular random matrix H. In par-
ticular, the total number of stationary points in the whole
space is given by

Ntot��� �
1

�N hj det��IN 	H�ji: (4)

Whenever the physical problem necessitates dealing
with the absolute value of the determinant, its presence
is considered to be a serious technical challenge; see [9],
and references therein. In particular, intensive work and
controversy persist in calculating the so-called thermo-
dynamic complexity of the free energy for the standard
Sherrington-Kirkpatrick model of spin glasses [6] or its
generalizations [5]. Several heuristic schemes based on
various versions of the replica trick were proposed in the
literature recently to deal with the problem; see discus-
sion and further references in [6]. Despite some important
insights, the present status of the methods is not yet
completely satisfactory.
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In the present Letter we propose two different methods
of dealing with the modulus of determinants, both free
from any mathematical uncertainty. The first method is
specific for the problem in hand and is heavily based on
the isotropy of the correlation function of the random
field V in Eq. (2). Exploitation of this fact provides one
with a possibility to employ, after some manipulations,
the standard methods of the random matrix theory [10]
and find the explicit expression for the number Ntot of
stationary points for any spatial dimension N.

To follow such a route we notice that the statistical
properties of the potential V result in the following
second-order moments of the entries Hij f�i; j� �
1; . . . ; Ng:

hHilHjmi �
J2

N
��ij�lm � �im�lj � �il�jm�; (5)

where we denoted J2 � f00�0�. This allows one to write
down the density of the joint probability distribution
(JPD) of the matrix H explicitly as

P �H�dH / dH exp



	

N

4J2

�
Tr�H2� 	

1

N � 2
�TrH�2

��
;

(6)

where dH �
Q

1�i�j�NdHij and the proportionality con-
stant can be easily found from the normalization condi-
tion and will be specified later on. It is evident that such a
JPD is invariant with respect to rotations H ! O	1HO
by orthogonal matrices O 2 O�N�, but it is nevertheless
different from the standard one typical for the so-called
Gaussian orthogonal ensemble (GOE) [10]. However, in-
troducing one extra Gaussian integration it is in fact
straightforward to relate averaging over the JPD (6) to
that over the standard GOE. In particular,
hj det��IN 	H�ji �
Z 1

	1

dt							
2�

p e	N�t
2=2�hj det���� Jt�IN 	H0�jiGOE; (7)

where the averaging over H0 is performed with the GOE-type measure: dH0 CN expf	�N=4J2�TrH2
0g, with CN �

N1=2=��2�J2=N�N�N�1�=42N=2� being the relevant normalization constant.
To evaluate the ensemble averaging in (7) in the most economic way one can exploit explicitly the mentioned

rotational O�N� invariance, and at the first step in a standard way [10] reduce the ensemble averaging to the integration
over eigenvalues  1; . . . ;  N of the matrix H0. After a convenient rescaling  i ! J

									
2=N

p
 i the resulting expression

acquires the form

hj det���� Jt�IN 	H0�jiGOE /
Z 1

	1
d 1 . . .

Z 1

	1
d N �

YN
i<j

j i 	  jj
YN
i�1

j
									
N=2

p
�m� t� 	  ije	�1=2� 2

i ; (8)

where we denoted m � �=J. One may notice that the above N-fold integral can be further rewritten as an N � 1 fold
integral:

e�N=4��m�t�
2
Z 1

	1
d 1 . . .

Z 1

	1
d N�1

YN�1

i�1

e	�1=2� 2
i � ��

									
N=2

p
�m� t� 	  N�1�

YN�1

i<j

j i 	  jj:

Such a representation makes it immediately evident that, in fact, the expectation value of the modulus of the de-
terminant in question is simply proportional to the mean spectral density !N�1�m� t� [also known as one-point cor-
relation function R�N�1�

1 �
									
N=2

p
�m� t��; see [10] ] of the same GOE matrix H0 but of enhanced size �N � 1� � �N � 1�:
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hj det���� Jt�IN 	H0�jiGOE / e�N=4��m�t�
2
!N�1��m� t�� ;

!N� � �
1

N
hTr�� IN 	H0�iGOE:

(9)
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The last relation provides the complete solution of our
original problem for any value of N, since the one-point
function R�N�1�

1 �x� is known in a closed form [10] for any
value of N in terms of the Hermite polynomials Hk�x�. In
particular, for any odd integer N we have
hj det���� Jt�IN 	H0�jiGOE �
JN							
2�

p

��
N 	 1

2

�
!

��
e	�x2=2�

XN
k�0

1

2kk!
H2
k�x� �

1

2N�1N!
HN�x�

�
Z 1

	1
e	�u2=2�HN�1�u�sgn�x	 u� du

�
; (10)
where we denoted x �
									
N=2

p
�m� t� for brevity. For even

integer N one more term arises; see [10].
Being interested mainly in extracting the complexity

���� � limN!1N	1 lnNtot��� we have to perform an
asymptotic analysis of Eqs. (4), (7), (9), and (10). In
principle, one can employ the known large-N asymptotics
of the Hermite polynomials, but we find it more conve-
nient to use an alternative, well-known representation for
the mean eigenvalue density:

!N� � �
1

N�
Im

@
@ b

�
det� IN 	H0�

det� bIN 	H0�

�������� b� 
: (11)
The ensemble average of the ratio of the two determi-
nants can be easily found in the framework of the super-
symmetric approach [11]. Following a variant of this
method we use for our analysis the following integral
representation for the derivative of the ratio of two deter-
minants featured in Eq. (11) [see Eq. (46) in Ref. [12] ]:

!N� � / Re
Z 1

	1

dq

q2
e	NL�q�GN�q;  �; (12)

where L�q� � �q2=2� � i q	 ln�q� and
GN�q� �
Z 1

0
dp1

�p1 	 q�

p3=2
1

exp

�
	
N
2
L�p1�

�
�
Z 1

0
dp2

�p2 	 q�

p3=2
2

jp2
1 	 p2

2j exp

�
	
N
2
L�p2�

�
: (13)

The form of the above expressions Eqs. (12) and (13), suggests that the large-N asymptotics should be given by a saddle-
point contribution in all integration variables. It turns out, however, that the situation is not that simple. To perform the
asymptotic analysis accurately it is convenient first to get rid of the nonanalyticity in the integrand by passing in the last
expression to new variables 0 � r <1, 	1< )<1 by p1 � re), p2 � re	). Further introducing u � r�cosh)	 1�
we arrive at

GN�q� /
Z 1

0

dr

r2
expf	NL�r�g �

Z 1

0
du�r� u���r	 q�2 	 2qu�e	N�u

2�2u�r�i =2��: (14)
The saddle-point value in the u variable is obviously us �
	�r� i =2�, but it can yield no contribution as long as
Re r > 0 along the contour of integration. The analysis
reveals that this is indeed the case for j j< 2. Under that
condition the u integral is dominated by the vicinity of its
end point u � 0, whereas integrals over r and q are
instead saddle-point dominated, the dominant saddle
points being rs � �	i �

															
4	  2

p
�=2 and qs � �	i 																

4	  2
p

�=2. Calculating the corresponding contribution
we arrive, as expected, to the standard semicircular
spectral density !� � � �1=2��

															
4	  2

p
. If, however,

the parameter  is such that j j > 2, the situation turns
out to be very different. In that case both saddle-point
values rs � i�	 �

															
 2 	 4

p
�=2 are purely imaginary,

necessitating a part of the steepest descent contour to
be chosen along the imaginary axis Re r � 0. As a result,
an additional contribution from the saddle-point us turns
out to be operative. Although such a contribution is ex-
ponentially small in comparison with one domi-
nated by the vicinity of u � 0, it is the only one which
survives after taking Re in (12). Taking into account the
saddle pont us induces modifications of the relevant ex-
ponential term in the r variable, which now becomes
expfN��r2=2� � lnr	 � 2=4��g and replaces the former
expression expf	NL�r�g. The relevant saddle point for r
then turns out to be rs � 	i as long as  > 2, and it
results in exponentially small (’’instanton’’) value for the
spectral density:

!� � / exp



	N

�
 2

4
	 ln

 �
															
 2 	 4

p

2

��
;  > 2;

(15)

where we only kept factors relevant for calculating the
complexity in the limit of large N.

Finally, we employ the relation (9) between the mean
spectral density and the expectation value of the modulus
of the spectral determinant for GOE matrices, and sub-
stitute the resulting expression into the integral (7). In the
latter we can again exploit the saddle-point method for
asymptotic analysis. For 0<m< 1 the relevant saddle
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point is ts � m satisfying 0<  s � ts �m< 2, and vali-
dating the use of the semicircular spectral density
!� s� � �1=2��

															
4	  2

s

p
in the calculation. This yields

hj det��IN 	H�ji / eN=2 �m
2	1�

															
1	m2

p
; 0<m< 1:

(16)

For m > 1, however, it turns out that one has to use
Eq. (15) for the spectral density. The corresponding
saddle-point value ts in the t integral is given by the
solution of the equation m � 1

2 � s �
															
 2
s 	 4

p
� for the

variable  s � ts �m. The solution is easily found to be
simply  s � m�m	1 (note that  s > 2, ensuring con-
sistency of the procedure) which yields the resulting value
for the modulus of the determinant to be given by

hj det��IN 	H�ji / eN lnm; m > 1: (17)

Invoking our basic relation Eq. (4) for Ntot we see that the
landscape complexity ���� of the random potential func-
tion (1) is given by

���� �
1

2

�
�2

J2
	 1

�
	 ln��=J�; � < �c � J; (18)

���� � 0; � > �c � J: (19)

Earlier works referred to the critical value �c � J as, on
one hand, signaling the onset of a nontrivial glassy dy-
namics [8], and, on the other hand, corresponding to the
point of a breakdown of the replica-symmetric solution
[7]. Our calculation provides an independent support to
the point of view attributing both phenomena to extensive
number of stationary points in the energy landscape. At
the critical value the complexity vanishes quadratically:
��� ! �c� / ��c 	��2=�2

c.
Finally, let us very shortly discuss an alternative, less

model-specific technique of evaluating the absolute value
of the spectral determinant. It is based on the following
useful identity (see, e.g., [13]):

j det��IN 	H�j

� lim
+!0

�det��IN 	H��2																																											
det���	 i+�IN 	H�

p 																																											
det���� i+�IN 	H�

p
(20)

valid for any matrix H with purely real eigenvalues. For
the particular case of real symmetric matrices H one can
represent the two factors in the denominator of the right-
hand side in terms of the Gaussian integrals absolutely
convergent as long as + > 0. Further representing the
determinantal factors in the numerator in terms of
the Gaussian integral over anticommuting (Grassmann)
variables we thus get a bona fide supersymmetric [11]
object to be analyzed. Simultaneous presence in the start-
ing expression both �� � �� i+ and � makes the cal-
culation in this case more involved in comparison with
just a simple ratio of two determinants, as in (11). It is
nevertheless an important fact that the possibility to
240601-4
perform the ensemble average explicitly exists whenever
matrix entries of H are Gaussian distributed, not requir-
ing any matrix invariance or even independence of the
matrix entries. A similar strategy may be even employed
whenH is a stochastic differential operator with a certain
Gaussian part, as in the notoriously difficult case of the
random field Ising model [14]. For this reason it is natural
to expect that the suggested method could be helpful
beyond the present model, e.g., when discussing free en-
ergy landscapes for spin-glass related problems [5,6].

In summary, we calculated the mean total number Ntot

of stationary points for a N-dimensional potential con-
sisting of a quadratic well of strength � and of a random
Gaussian piece V. In particular, for N ! 1 we found that
the potential is characterized by a finite landscape com-
plexity: Ntot � eN�, � > 0, as long as �<�c, and for
� ! �c the complexity � vanishes quadratically.
Finally, we discuss a general method of calculating the
mean absolute value of the spectral determinant.
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