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Quantum Confinement and Electronic Properties of Silicon Nanowires
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We investigate the structural, electronic, and optical properties of hydrogen-passivated silicon
nanowires along [110] and [111] directions with diameter d up to 4.2 nm from first principles. The
size and orientation dependence of the band gap is investigated and the local-density gap is corrected
with the GW approximation. Quantum confinement becomes significant for d < 2.2 nm, where the
dielectric function exhibits strong anisotropy and new low-energy absorption peaks start to appear in
the imaginary part of the dielectric function for polarization along the wire axis.
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Nanowires are one-dimensional nanostructures with
electrical carriers confined in the other two (perpendicu-
lar) directions. They exhibit interesting physical proper-
ties that are noticeably different from those of quantum
dots and the bulk. Of particular importance in technology
are semiconducting nanowires that have potential appli-
cations in many fields such as optoelectronics, photo-
voltaic cells, and especially device miniaturization [1].
Recently, it has been possible to fabricate, for example,
single-crystal silicon nanowires (SiNWs) with diameters
as small as ~1 nm and lengths of a few tens of micro-
meters [2—6]. Photoluminescence data revealed a sub-
stantial blueshift with decreasing size of nanowires
[5,7,8]. Recent scanning-tunneling spectroscopy data
[5,6] also showed a significant increase in the electronic
energy gap for very thin semiconductor nanowires, ex-
plicitly demonstrating the quantum size effect.

Unlike other nanostructures such as quantum dots and
nanotubes that have attracted considerable attention in
recent years, relatively fewer theoretical investigations of
quantum nanowires have been conducted to date. A con-
ductance calculation for finite wires connected to alumi-
num electrodes has been reported [9], but most of the
previous theoretical studies focused on interpreting the
photoluminescence data of porous Si [7], and therefore
concentrated on SiNWs oriented along the [100] direction
with a hypothetical rectangular cross section. The diame-
ters of the wires considered in previous first-principles
studies [10-13] were <1.5 nm, too small to study the
transition trend from the bulk. Studies using empirical
or semiempirical methods have also been carried out
[14-17]. In contrast, the SINWs grown by recent experi-
ments were mostly along the [110] direction [1,6], while
wires along [112] were also observed [6]. Thus, the de-
pendence of quantum confinement on the wire orientation
can be uniquely investigated for these systems.

In this work, we study hydrogen-passivated SiNWs
oriented along both [110] and [111] directions using the
density-functional theory (DFT) in the local-density ap-
proximation (LDA) and the many-body perturbation
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method based on the GW approximation, focusing par-
ticularly on the electronic energy gaps, optical properties,
and their dependence on wire diameter and orientation.
SiNWs synthesized in experiments usually have a
roughly cylindrical shape with chemical passivation on
the surface. We construct our cylindrical wire models
from the bulk and passivate all Si dangling bonds on the
surface by H atoms in such a way that no complex of SiH;
is present. Shown in Fig. 1 are the ball-and-stick models
for the thinnest wire along the [110] and [111] orientations
that we have studied.

Our calculations show that all [110] wires exhibit a
“direct” fundamental band gap at I" due to band folding,
while the [111] wires exhibit a transition from an indirect
gap in large wires to a direct one in small wires. The gap
increases subquadratically as d decreases. More strik-
ingly, when the diameter d becomes less than 2.2 nm
the dielectric function exhibits strong anisotropy, and

FIG. 1. Ball-and-stick models of silicon nanowires (SiNWs)
along the [110] (right) and [111] (left) directions viewed from
the top (upper panels) and the side (lower panels). Filled circles
stand for Si atoms, and open circles for H atoms.
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new absorption peaks show up in eg(w), the imaginary
part of the dielectric function along the wire axis.

Our calculations are carried out within DFT using
norm-conserving pseudopotentials [18] with a plane-
wave basis set. Periodic-boundary conditions are em-
ployed in the xy plane with supercells large enough to
eliminate the interaction between neighboring wires. It is
found that a 5-A separation between two closest H atoms
on neighboring wires is sufficient to make such interac-
tion negligible (<1 meV per H atom on average). The
energy cutoff for the plane waves is in the range of 15—
20 Ry. The Monkhorst-Pack k-point meshes of 1 X 1 X 4
to 1 X 1 X 8 are found to provide sufficient accuracy in
the calculation of total energies and forces. Summarized
in Table I are the diameter of the wires and the number of
atoms in the supercells used in our calculation.

We first relax the atomic configurations of our SIN'Ws,
and the electronic structure is studied for the fully re-
laxed structures. Bulk Si is known to have an indirect
band gap of 1.17 eV, with the conduction-band minima
located at about 85% along I" to X. Therefore, there are
six equivalent conduction-band minima on *x, *y, and
*z axes, with a transverse mass (0.1905) much less than
the longitudinal mass (0.9163). When [110] wires are
formed, two of these minima on *z will be projected
onto I' based on the effective-mass approximation, ex-
hibiting both the large mass and the small mass in the
confinement plane. The band edge associated with the
large mass will be least upshifted due to confinement,
giving rise to a direct gap. In contrast, the projection
along the [111] direction is expected to produce an indi-
rect gap in large [111] wires. Indeed, we do find an
indirect gap for wires with diameter larger than 2 nm.
However, the difference between the indirect and direct
gaps is very small (less than 0.05 V). Therefore, only the
direct LDA energy gaps (E;P*) are plotted in Fig. 2,
which shows the size dependence of band gap for
the [110] and [111] wires. Since the effective mass in the
confinement plane for the [111] wires is smaller than the
relevant counterpart (the longitudinal mass) for the [110]
wires, the energy upshift is expected to be larger for the
[111] wires. Hence, in addition to a size dependence, the
energy gap also depends on orientation.

TABLE I.  Diameter (d) and the number of Si and H atoms
for the wires in our supercell calculation.

[110] d@mm) Si H [1I1] d@mm) Si H

0.92 38 30

1.20 16 12 1.31 62 42
1.60 42 20 1.69 110 54
2.20 76 28 2.07 170 66
2.60 110 36 2.46 218 78
3.30 172 44 2.84 302 90
4.02 250 52 3.23 398 102
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It is well known that the Kohn-Sham energy gap is not
the quasiparticle gap, and that the LDA gap is always
smaller than the observed value. This can be corrected by
evaluating the self-energy operator in the GW approxi-
mation [19]. We have calculated the GW quasiparticle
gaps (EgW) for the two thinnest [110] wires as well as
for bulk silicon. Both the LDA gaps and the GW correc-
tions greatly increase as d decreases. We fit these band gap
values with a function of E, ,, + const X (1/d)®, where
E, v 18 the bulk gap value from LDA or GW, and « is
found to be approximately 1.7. The value a =2 is
expected using an effective-mass particle-in-a-box ap-
proach [16]. For bulk silicon, E¥PA = 0.58 eV, indicated
by the solid line in Fig. 2, and the GW correction is about
0.5 eV, which uplifts the gap to 1.08 eV. The GW correc-
tions are 1.62 eV ( = 3.12-1.50)and 1.29 eV (=2.32-1.03)
for the two [110] wires with d = 1.20 and 1.60 nm, re-
spectively. These are more than twice or 3 times the
correction found in the bulk. An interesting finding here
is that the self-energy correction, which increases mono-
tonically with decreasing diameter, exhibits a rather
strong size dependence also. In the past, this important
variation has been neglected by postulating a size-
independent constant correction that is usually obtained
from the bulk [13]. This will inevitably introduce signifi-
cant errors in the calculated optical gaps.

Also shown in Fig. 2 are the measured band gaps [6] for
SiNWs along [112] and [110]. Since most of the measured
gaps were for wires along [112] in this experiment, the
comparison with our theoretical prediction (the dotted
line) should be viewed with caution. The single point for
a [110] wire agrees very well with our theoretical
value. Still, the experimental data shows generally good

35
o [110]
3.0 o [111]
m [110], GW
-+ [112], expt. (Ref. 6)
25 > [110], expt. (Ref. 6)
S 20
L
Wis |
""""""""""""" R
1.0 + 1
I = S
0.5 1
0.0

Diameter (nm)

FIG. 2 (color online). LDA band gaps calculated for [110]
(empty squares) and [111] (empty circles) wires, and the
GW-corrected gaps (filled squares) for the two thinnest [110]
wires and bulk Si, compared with the measured gaps for [112]
wires (+) and a [110] wire (*). The dotted, dashed, and long-
dashed lines are fitted to the data points (see text). The LDA
band gap of bulk Si is indicated by the solid line, and the bulk
GW gap is marked around d = 8.0 nm for convenience.
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agreement with the GW-corrected curve, though for small
wires the discrepancy becomes appreciable. This, in turn,
confirms that the orientation dependence of band gaps
become more significant in small wires, e.g., d < 2.2 nm
in this case.

In Fig. 3, the characteristics of the electronic states in
[110] wires is illustrated in a band-by-band fashion using
the wire with d = 1.2 nm. (The structure of this wire is
shown in Fig. 1.) The charge density is plotted in the xy
plane after averaging along the axial direction. Shown are
the results for the first six valence bands, the highest
occupied band (band 38), and one band in between
(band 18), as well as the lowest conduction band (band
39). The evolution can be semiquantitatively explained by
the simple model of a particle confined in an infinite
cylindrical potential well. If the radius of the cylindrical
well is denoted by ry = d/2, the stationary solutions can
be found analytically as i,,(r, ¢) < J;(B,r/ry) cos({¢p)
or J,(B,r/ro) sin(lp), where I = 0, 1,2, ...,and B,; is the
nth zero of the Ith Bessel function J;(x) that determines
the nodal structure in the radial direction. The eigenval-
ues are then E,; = /i*82,/(2m*r}), where m* is the effec-
tive mass. All energy levels except for [ = 0 are therefore
doubly degenerated. We find that the calculated charge
density distribution for real wires indeed follows these
features characterized by the quantum numbers {n, [}, as
can be seen in Fig. 3. For instance, the values of {n, [} for

FIG. 3 (color online). Electronic charge distribution in the xy
plane (integrated along the wire axis) for the [110] wire with
d = 1.20 nm. The band indices are shown in each figure. The
top panels marked with a, b, and ¢ are the results of a simple
model for bands 1, 2, and 3, respectively (see text). The high
(low) density region is indicated by red/dark (blue/light).
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the first few bands in Fig. 3 are {1, 0} for band 1, {1, 1} for
bands 2 and 3, {1, 2} for bands 4 and 5, and {2, 0} for band
6. For higher bands, such correspondence to the simple
model becomes less precise.

The optical properties are studied by computing the
complex dielectric function, €(w) = €;(w) + i €;(w), in
which the imaginary part €,(w) is closely related to the
optical absorption at a given frequency w. A knowledge
of €,(w) over a wide frequency range allows one to obtain
€;(w) using the Kramers-Kronig relation. €,(w) can be
written as [20]

4
&6&(w)= e 2(2 )3f dk|M;;(K)[* 8[w — w;;(K)],

where the integral is over all states in the Brillouin zone
and the sum is over all combinations between the valence
band i and the conduction band j, whose wave functions
and energy levels are denoted as {i;, E;} and {;, E;},
respectively. The matrix element between bands i and j at
k can then be written as M;;(k) = (y;(k)|é - ply;(k)),
and fiw;;(k) = E; — E;. Here € and p denote the polar-
ization vector and the momentum operator, respectively.
Using our GW-corrected band gaps (Fig. 2), a scissor
operator is applied to move all conduction bands up by
the amount of the GW correction in the calculations of
€,(w). The spin-orbit interaction and excitonic effect are
not included in this calculation.

Figure 4 shows the calculated €,(w) for three thinnest
wires along [110] and bulk Si. €,(w) are evaluated for the
polarization along the axial (z) direction [ez(a))] and in
the xy plane [€5(w)]. Although the fundamental gap is
direct in the wires, the matrix elements are still vanish-
ingly small near the gap. Even for the smallest wire (d =
1.2 nm), the allowed dipole transition does not show up
until 1 eVabove the fundamental gap. It is ready to see that
€,(w) demonstrates strong anisotropy in two polarization
d1rect10ns for d < 2.2 nm, where the overall spectrum of

€5 (w) is shifted to higher frequency compared to ez(a))
and the relatlve shift becomes larger as d decreases. At
d = 2.2 nm, ez(w) and €3 (w) almost merge together and
exhibit features in bulk Si except for an energy shift.
Similar anisotropy is also found in a previous semiem-
pirical tight-binding study [14] for a Si wire of 0.77 nm
oriented in the [100] direction. Here we confirm this
anisotropy from first-principles studies and illustrate its
evolution as the wire diameter decreases. Our calculation
predicts that a size of about 2 nm or smaller is needed to
exhibit the anisotropic absorption in SiN'Ws.

Another 1nterest1ng feature in Fig. 4 is that the absorp-
tion peak in ez(w) associated with the main peak (black
dots) in bulk Si seems to remain approximately 3.0 eV
above E?W in the nanowires, while the absorption edge
(vertical dashed lines) moves toward ng (arrows) as d
decreases. The latter is a consequence of mixing the bulk
states in finite-sized wires, leading to an enhancement of
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FIG. 4 (color online). Imaginary dielectric functions €,(w)
polarized along the z direction [eg(w), solid lines] and in the xy
plane [ezl(w), dotted lines], for silicon [110] wires with d =
1.2, 1.6, and 2.2 nm, respectively. Shown in the bottom panel is
€,(w) for bulk c-Si. The dielectric functions are calculated
with the scissor operator to fix the band gap at the GW values
(ng) and the energy zero is set at the top of the valence band.
The arrows and vertical dashed lines mark EgGW and the optical
absorption edges, respectively. The black dots indicate the
original absorption peak in bulk Si, and the inverted triangles
show the new peaks developed in nanowires.

the dipole transition. This also gives rise to other low-
energy peaks in smaller and smaller wires, including a
major peak (triangles) that is about 0.7 eV below the
original peaks (black dots) and becomes the most promi-
nent one for d = 1.2 nm. In a previous theoretical study
conducted for Si [001] wires (d < 1.56 nm, Ref. [11]),
certain peaks were found not to change with the system
size and were assigned to bulklike excitations. After
including the size-dependent quasiparticle gap correc-
tion, we did not find such features in our studies.

Recently, the energetics of silicon nanowires and pos-
sible ground-state structures have been discussed [21]. In
this work we have adopted a wire geometry with a bulk-
like structure in the interior, as observed in experiments
[1,6]. The energetics of the nanowires can be investigated
through the energy difference between the nanowires and
the bulk with the same number of atoms N. Apart from a
constant term which represents the energy of the edges,
we find that the energy difference between the wire and
the bulk is linear in N'/2(~d) (with a linear correlation
factor of 0.99). This is consistent with a regular surface
energy contribution to the total energy of the wires.

In conclusion, we have studied from first principles the
structures of SIN'Ws oriented in the [110] and [111] direc-
tions and their electronic and optical properties as a
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function of diameter. These properties are strongly influ-
enced by quantum confinement and the electronic states
can be described by those associated with a cylindrical
potential well. Direct fundamental band gaps are found at
I' for [110] and small [111] wires, which increase subqua-
dratically as diameter shrinks. It is also found that [111]
wires have overall a larger gap than [110] wires, as
expected from the effective-mass difference. The under-
estimation of band gaps by LDA is rectified by the GW
self-energy correction, which turns out to be surprisingly
sensitive to wire size. In addition, anisotropy in the di-
electric function is found in the wires with d =< 2.2 nm,
where extra peaks in the absorption coefficient also start
to develop.
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