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Using quantum Monte Carlo simulations, results of a strong-coupling expansion, and Luttinger liquid
theory, we determine quantitatively the ground state phase diagram of the one-dimensional extended
Hubbard model with on-site and nearest-neighbor repulsions U and V. We show that spin frustration
stabilizes a bond-ordered (dimerized) state for U = V/2 up to U/t = 9, where ¢ is the nearest-neighbor
hopping. The transition from the dimerized state to the staggered charge-density-wave state for large
V/U is continuous for U < 5.5 and first order for higher U.
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The one-dimensional Hubbard model, which describes
electrons on a tight-binding chain with single-particle
hopping matrix element ¢ and on-site repulsion U, has a
charge-excitation gap for any U > 0 at half filling [1]. In
the spin sector, the low-energy spectrum maps onto
that of the S = 1/2 Heisenberg chain; the spin coupling
J =472/U for U— oo. The spin spectrum is therefore
gapless and the spin-spin correlations decay with distance
r as (—1)"/r [2]. Hence, the ground state is a quantum
critical staggered spin-density wave (SDW). In the sim-
plest extended Hubbard model, a nearest-neighbor repul-
sion V is also included. The Hamiltonian is, in standard
notation and with ¢ = 1 hereafter,

H=—1 Z Z(C;cho,i + Cz-,ica',i-H)

o=l i

FUY npny + VY ing. 1)
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The low-energy properties for V < U/2 are similar to
those at V = 0. For higher V, the ground state is a stag-
gered charge-density-wave (CDW), where both the
charge and spin excitations are gapped. The transition
between the critical SDW and the long-range-ordered
CDW has been the subject of numerous studies [3—14].
Until recently, it was believed that the SDW-CDW tran-
sition occurs for all U >0 at V = U/2 and that it is
continuous for small U ( < 5) and first order for larger
U. However, based on a study of excitation spectra of
small chains, Nakamura argued that there is also a bond-
order-wave (BOW) phase [10], where the ground state has
a staggered modulation of the kinetic energy density
(dimerization), in a narrow region between the SDW
and CDW phases for U smaller than the value at which
the transition changes to first order. Previous studies
[6-9] had indicated an SDW state in this region.
Nakamura’s BOW-CDW boundary coincides with the
previously determined SDW-CDW boundary. The pres-
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ence of dimerization and the accompanying spin gap
were subsequently confirmed using quantum Monte
Carlo (QMC) simulations [11,12]. The BOW phase now
also has a weak-coupling theory [13].

The existence of an extended BOW phase has recently
been disputed. Jeckelmann argued, on the basis of
density-matrix-renormalization-group calculations, that
the BOW exists only on a short segment of the first-order
part of the SDW-CDW boundary [14], i.e., that the tran-
sition always is SDW-CDW and that BOW order is induced
only on part of the coexistence curve. However, QMC
calculations demonstrate the existence of BOW order well
away from the phase boundary [12].

Although several studies agree on the existence of an
extended BOW phase [10—-13], the shape of this phase in
the (U, V) plane has not yet been reliably determined. The
system sizes used in the exact diagonalization study [10]
were too small for converging the SDW-BOW boundary
(i.e., the spin-gap transition) for U = 4. In the previous
QMC studies [11,12], the emphasis was on verifying
the presence of BOW order and the phase transitions
for U = 4. In this Letter, we present the complete
phase diagram. Taking advantage of recent QMC algo-
rithm developments—stochastic series expansion with
directed-loop updates [15] in combination with the
quantum generalization [11] of the parallel tempering
method [16]—we have carried out high-precision,
large-chain (up to L = 1024) calculations for sufficiently
high U ( = 12) to locate the point at which the BOW order
vanishes. In agreement with Ref. [14], we find that the
BOW exists also above the U at which the transition to the
CDW state becomes first order. However, long-range BOW
order exists also below this point, and, hence, the point at
which the nature of the transition changes from continu-
ous to first order is on the BOW-CDW boundary.

The phase diagram we find here is qualitatively similar
to that obtained in a fourth-order strong-coupling expan-
sion, where the transition to the CDW state is determined
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by comparing the energies of the large-V CDW state and
the effective spin model including nearest- and next-
nearest-neighbor interactions J and J' [8]. The BOW
phase corresponds to the spontaneously dimerized phase
of the spin chain, ie., J//J > 0.241 [17]. In Fig. 1, we
compare our QMC phase boundaries with the strong-
coupling result; the procedures giving the QMC bounda-
ries will be discussed below. We will show that the system
is a Luther-Emery liquid on the continuous BOW-CDW
boundary, i.e., the charge gap vanishes and the spin gap
remains open. Evidence supporting this type of transition
was also presented in Ref. [11]. Here we will further argue
that the change to a first-order transition corresponds to
the Luttinger charge exponent K, reaching the value 1 /4.

We extract the SDW-BOW and BOW-CDW boundaries
using the charge and spin exponents K, and K ,. If there is
a spin or charge gap, the corresponding exponent van-
ishes. Otherwise the equal-time correlation function
C,(r) ~ r~ KK Co(r) ~ r~(K:'+K,) If nonzero, the
spin exponent K, = 1 as a consequence of spin-rotation
invariance [18]. On periodic chains the exponents can be
conveniently extracted from the static structure factors

Sp,a-(‘]) [19]7

1 o
S,olq) = zzel"(’_k)«nu *on)(ny £ ny)),  (2)
Jk

in the limit ¢ — 0™

Kp,o‘ = 77'Sp,O'(ql)/ql: q1 = 27T/L:

L — o0,
(3)

If there indeed are three successive phases, SDW-BOW-
CDW, as V is increased at a fixed value of U, then the spin
exponent K, = 1 in the SDW phase and K, = 0 every-
where else. The charge exponent K, = 0 everywhere,
except exactly at the BOW-CDW transition point if this
is a continuous quantum phase transition (i.e., if the
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FIG. 1. QMC and strong-coupling phase diagram. The BOW
is located between the SDW-BOW and BOW-CDW curves.
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charge gap vanishes). In contrast, if the transition is first
order, then K, = 0 also on the phase boundary. Using the
relation (3) for a finite system, any discontinuities will
naturally be smoothed, and one can only expect to ob-
serve 7S, ,(q1)/q; developing sharp features as L is
increased. In Fig. 2, we show results demonstrating this
for several different system sizes at U = 4, 6, and 8.
Looking first at the charge exponent, if K, > 0 on the
BOW-CDW boundary and Kp = (0 elsewhere, then one
can expect a peak developing in 7S,(q,)/q; versus V.
The peak position corresponds to the critical V, and the
peak height should converge to K,,. If the transition is first
order, 7S ,(q,) /q, should converge to zero for all V, but
one can still expect some structure at the phase boundary
for finite L as the nature of the ground state changes. In
Fig. 2, for U = 4 and 6 the development of sharp peaks is
apparent. For U = 4, the peak height converges to a
nonzero value, implying a continuous transition at V =
2.160 with K, =~ 0.43. For U = 6, the convergence to a
value > 0 is not clear, but the transition point is given
accurately by the peak position, which shows very little
size dependence. It has been shown previously that the
transition is first order for U = 6 [6,11], and the peak
should therefore in fact converge to zero. The rather slow
decay reflects the proximity to the point at which the
transition becomes continuous. For U = 8, the peak does
not sharpen, but instead a step develops at the critical V.
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FIG. 2. Long-wavelength charge (left panels) and spin (right
panels) structure factors vs V for U = 4 (top), 6 (middle), and 8
(bottom). The system sizes are indicated in the lower-right
panel. The U = 4 inset shows the dependence on the inverse
lattice size at V = 2.10.
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The whole curve converges to 0 as L — 0. The transition
is, hence, strongly first order in this case, in agreement
with previous calculations. As seen in Fig. 1, and as
observed already by Hirsch [6], the locations of the U =
6 and 8§ critical points agree very well with the strong-
coupling expansion [20].

In the SDW phase, one cannot expect to easily find
7S,(q1)/q, — 1 exactly, due to logarithmic corrections
that affect various quantities strongly even for very long
chains [21,22]. However, the log corrections are known to
vanish in the frustrated J — J' spin chain at its dimeriza-
tion transition [23], and, hence, since the SDW-BOW
transition should be of the same nature, the log correc-
tions should vanish here as well. The transition at fixed U
should therefore be signaled by 7S,(q,)/q, crossing 1
from above as V is increased. Because of the vanishing
log corrections at the transition, the crossing point with 1
should not move significantly as L is increased, but the
drop below 1 should become increasingly sharp, and
eventually 7S,(q;)/q, should approach 0 inside the
BOW phase. This method was used in Ref. [11] and gave
a slightly higher critical V for the SDW-BOW transition at
U = 4 than the exact diagonalization [10]. We now have
results for a wider range of couplings. The results shown
in Fig. 2 are in accord with the above discussion for all
three U values; 7S,(g;)/q; crosses 1 at a V point which
does not move visibly between L = 64 and L = 256. For
larger V, one can see a sharper drop for the larger system
sizes. The size dependence at U = 4, V = 2.1 is shown in
an inset. Here the convergence to 0, i.e., the presence of a
spin gap, is apparent. If the spin gap is small, as it is close
to the phase boundary, the convergence to 0 will obvi-
ously occur only for very large systems.

Results such as those shown in Fig. 2 were used to
determine the phase boundaries in Fig. 1. As already
noted, the BOW aspect of the phase diagram differs
from previous proposals [10,11,13,14] in that the BOW-
CDW transition can be either continuous or first order, i.e.,
the change of order occurs on the BOW-CDW boundary.
The existence of two special points, one where the tran-
sition order changes and one at higher U where the BOW
vanishes, was also suggested by Jeckelmann [14], who,
however, insists that the BOW does not exist for small U
where the transition to the CDW state is continuous (i.e.,
his phase diagram has no continuous BOW-CDW transi-
tion). We have carried out calculations for U down to 1,
and, as shown in Fig. 1, we still find a BOW phase there.
Most likely, in view also of weak-coupling arguments
[13], the BOW extends down to U = 0. We find no BOW
for U = 9. In the strong-coupling expansion, using the
couplings J and J' derived by van Dongen [8], the effec-
tive spin model is gapped, i.e., J' > 0.241J [17], above the
dashed curve in Fig. 1. The J — J' mapping is not appli-
cable beyond the transition into the CDW state, which (the
solid curve in Fig. 1) was previously calculated by com-
paring the fourth-order CDWand J — J' energies [8]. The
fourth-order BOW region ends at U = 7, where the spin-

236401-3

gap curve crosses the CDW-transition curve. This is
slightly lower than what we find based on QMC. The
strong-coupling BOW extends down to smaller U, V, but
clearly the fourth-order result cannot be expected to be
quantitatively accurate in this region. Nevertheless, the
spin-frustration mechanism consistently explains the
presence of an SDW-BOW transition and an extended
BOW phase. Spin frustration was previously cited by
Jeckelmann [14], but, surprisingly, he used it in support
of a BOW of vanishing extent.

Next, we consider the nature of the BOW-CDW tran-
sition. As discussed in Refs. [10,13], the continuous criti-
cal point for small U is described by a Gaussian free
(charge) boson theory, characterized by the parameter
K,. At generic values of (repulsive) U, V, the leading
“4kr” umklapp process is present, and has scaling di-
mension Ay, = 2K, and is, hence, relevant (Ay, < 2)
for K, <1. At the BOW-CDW transition, this operator
vanishes, leading to a vanishing of the charge gap. For
consistency, no other relevant operators should be present,
which would otherwise require fine-tuning to zero, mak-
ing the Gaussian theory a multicritical point. The most
dangerous candidate is the “8k;”" umklapp process, with
Agr, = 4A4, = 8K, so a continuous Gaussian critical
point is possible only for 1> K, > 1/4. Even in this
range, the Gaussian theory is an unusual critical point
with nonuniversal behavior, e.g., the correlation length
exponent » = 1/(2 — 2K ).

Extrapolated QMC results for K, on the BOW-CDW
boundary are shown in Fig. 3. The finite-size corrections
appear to be of the form 1/L%, with a U dependent
exponent a. At U = 4, a = 1, as shown in the inset of
Fig. 3. For larger U, a decreases rapidly and is difficult to
determine accurately for U = 5. The extrapolated K,
value at U = 5 in Fig. 3 should be regarded as an upper
bound. At U = 6, the extrapolated K p < 1/4, and, hence,
we expect an eventual drop to 0. This is consistent with
clear signals of a first-order transition [11]. Also at U =
5.5 there are signs of first-order behavior, e.g., in order
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FIG. 3. QMC results for Luttinger charge exponent on the
BOW-CDW boundary (solid circles). The inset shows the finite-
size scaling for U = 4.
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FIG. 4. Finite-size scaling of the BOW and CDW susceptibil-
ities for U = 3 (left) and 4 (right). The symbols correspond to
different system sizes as in Fig. 2. The dashed lines indicate the
independently determined critical points.

parameter histograms such as those considered in
Ref. [11]. We believe that the change from a continuous
to a first-order transition occurs between U = 5 and 5.5.

What is the nature of the tricritical point at which the
transition becomes first order? The simplest scenario is
that this is the last (marginally) stable point of the
Gaussian fixed line, i.e., with K, = 1/4. This hypothesis
predicts that the critical K, continuously approaches 1/4
as the tricritical point U = U, is approached from below,
as K, —1/4~/(U, — U)/U,. We do not have sufficient
data to verify this form, but it is consistent with a sharp
drop to 0 between U = 5 and 5.5 (Fig. 3), required since
at U = 5.5 the transition should be first order. Hence, we
favor this behavior over the a priori consistent (but less
simple) possibility of a nontrivial “strong coupling”
tricritical fixed point far from the Gaussian line.

To further demonstrate the Luther-Emery state on the
continuous BOW-CDW curve, we study the finite-size
scaling of the CDW and BOW susceptibilities, ycpw(7)
and ypow(a) (with their standard Kubo-integral defini-
tions [11]). Both the charge and bond correlations should
decay as (—1)"r % [18], implying that the susceptibili-
ties scale with system size as L>~X». Thus, y(7)LX 2
curves for different L should intersect at the critical
BOW-CDW point. Figure 4 shows results for U = 3 and
4, using the K, values determined above. For U = 4, the
expected scaling can be observed even for small systems.
For U = 3, the corrections are larger, and the asymptotic
scaling sets in only for L = 128. This is clearly due to the
smaller spin gap at U = 3, which implies a longer length
scale below which remaining spin correlations affect the
charge and bond fluctuations.

In summary, we have determined the ground state
phase diagram of the extended Hubbard model at half
filling. The dimerized BOW phase can be explained by
spin frustration. The BOW-CDW transition changes from
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continuous to first order between U = 5 and 5.5. On the
critical (U, V) curve, the system is a Luther-Emery liquid,
with a charge exponent K, decreasing from 1 as U is
increased from 0. We have argued that the minimum
K, =1/4 and that the BOW-CDW transition becomes
first order when this value is reached.
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