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Escaping from Nonhyperbolic Chaotic Attractors
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The noise-induced escape process from a nonhyperbolic chaotic attractor is of physical and
fundamental importance. We address this problem by uncovering the general mechanism of escape
in the relevant low noise limit using the Hamiltonian theory of large fluctuations and by establishing
the crucial role of the primary homoclinic tangency closest to the basin boundary in the dynamical
process. In order to demonstrate that, we provide an unambiguous solution of the variational equations
from the Hamiltonian theory. Our results are substantiated with the help of physical and dynamical
paradigms, such as the Hénon and the Ikeda maps. It is further pointed out that our findings should be
valid for driven flow systems and for experimental data.
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escape from a nonhyperbolic CA, but it remedies, in
addition, shortcomings in the previous method. Here-

additive Gaussian white noise. To be specific, for a
d-dimensional map xn�1 � f�xn	 � �n, the action of the
Many nonequilibrium systems in physics, chemistry,
biology, or technology exhibit, as a crucial feature, noise-
induced escape from a metastable state. Examples range
from Josephson junctions [1], switching in lasers [2],
Penning traps [3], over chemical reactions [4], and protein
folding [5] to electronic circuits [6,7]. For small noise
intensities, a WKB-like extension of Kramers’ equilib-
rium theory [8,9] has been developed to treat the realm of
nonequilibrium systems [10,11]. This approach, making
use of an auxiliary Hamiltonian system, identifies the so-
called most probable exit path (MPEP), whose probabil-
ity of occurrence is exponentially larger than that of all
the other paths. The MPEP can be observed through its
‘‘prehistory probability distribution’’ and it was carried
out numerically [12] and experimentally [7].

The variational equations for the calculation of the
MPEP are well known both for continuous [11,13] and
discrete systems [14–17], yet it is in general not clear how
to solve them. Methods have been proposed only for the
special case of escaping from periodic states (fixed
points, periodic orbits, or limit cycles) [18,19]. Thus,
the challenging question of noise-induced escape from a
chaotic attractor (CA), although tried before, remained
to be answered. The reason is that all previous work
dealing with the escape from a CA relies on Monte
Carlo simulations of the escape path. By making use
of the prehistory probability distribution, an unstable
periodic orbit embedded in the CA was identified and
taken as an initial condition for the calculation of the
MPEP [20–22].

In this Letter, we show that, in fact, the initial con-
dition for the MPEP, and thus the path itself, is uniquely
determined by the primary homoclinic tangency (PHT)
closest to the basin boundary, as well as its preimages and
images. Our solution of this long-standing problem does
not only uncover the general mechanism of noise-induced
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with, we establish the following. First, no unstable peri-
odic orbits have to be determined and no Monte Carlo
simulations have to be run to identify these orbits in the
escape path. Second, the arbitrariness of the selection of
one particular periodic orbit, whose coincidence with the
MPEP is not given from first principles, can be dispensed
with. As a matter of fact, the PHT is, in contradistinction,
a completely deterministic quantity and can be both
easily calculated numerically [23] and extracted from
experiments [24]. Third, complementary to the work of
Ref. [22] in which the importance of the homoclinic
structure of the fractal basin boundary to the MPEP is
stressed, the present work closes an important gap in
pointing out the essential role of the homoclinic structure
of the chaotic attractor.

Virtually all CAs occurring in nature or serving as
prototype models in nonlinear dynamics are nonhyper-
bolic. Nonhyperbolicity means that the stable and un-
stable manifolds of the system are tangent in the phase
space. If both manifolds belong to the same periodic
orbit, these tangencies are homoclinic. They are called
primary, if the, generally quadratic, curvature of the
manifolds in the vicinity of the tangent points attain a
minimum. Bounded noise on nonhyperbolic CAs causes
attractor deformations [23,24], which are most pro-
nounced at the forward and backward iterations of the
PHT closest to the basin boundary. As a consequence,
PHTs can be better defined as being those tangencies
which exhibit an amplification of a perturbation under
forward and backward dynamics.

In the following we consider discrete systems, but our
results are not limited to them and apply equally well to
any flow that can be reduced to a Poincaré map. For the
nonequilibrium case, in analogy to Kramers’ law, the
mean first exit time is given through the least action S
[11,17,25] by h�i � exp�SD�, where D is the variance of the
2004 The American Physical Society 234101-1



FIG. 1 (color online). CA for the Hénon map with a � 1:3
and b � 0:29. The hatched region marks the basin at infinity.
The PHT at �x; y	 � �1:653;
0:099	 is shown, together with its
tenfold preimages (numbered 
1; . . . ;
10) as circles, the
threefold images of the PHT (numbered 1, 2, 3) as diamonds,
while the MPEP is depicted with crosses, connected through a
dashed line to guide the eyes. The saddle point on the boundary
is marked with a square.
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escape trajectory to be minimized has the form

SN �
1

2

XN
n�1

�xn�1 
 f�xn	�
2 �

1

2

XN
n�1

�T
n�n; (1)

where the �n are the noise vector terms. The boundary
conditions are such that x1 is a point of the attractor and
xN is on the basin boundary, from where no fluctuations
are needed to pass to another stable state. The MPEP,
which minimizes this action, can be calculated through
the Lagrangian [13,16]

L �
1

2

XN
n�1

�T
n�n �

XN
n�1

�T
n�xn�1 
 f�xn	 
 �n� (2)

to yield upon variation of �n; �n, and xn the area-preserv-
ing equations

x n�1 � f�xn	 � �n; (3)

�n�1 � f�Df�xn�1	�
Tg
1�n; (4)

where Df is the Jacobian matrix of f. The Lagrange
multipliers �n replace the noise terms �n. The optimal
solution of Eqs. (3) and (4), yields the least action S �
1
2

PN
n�1 �

T
n�n, the corresponding MPEP (given by the xn),

and the optimal force (�n).
The solution of these equations is intricate though,

caused by wild, fractal fluctuations of the energy land-
scape having many local minima and maxima [25]. A
way to deal with these difficulties, when escaping from a
periodic solution, is to employ a refined shooting method
[18,19]. It consists of a parametrization of the initial
conditions x1 in Eq. (3) on a small circle centered in
one of the components of the periodic orbit xPO, and for
�1 pointing to the unstable manifold of xPO. Equivalently,
one can take as an initial condition one point of the
periodic orbit itself x1 � xPO and �1 2 r�, where
 2 �0; 2�� and r is varied within r 2 �rmin; Lrmin�.
Here L is the largest eigenvalue at xPO and rmin arbitrary,
but small. The upper limit of r guarantees that every
solution is considered only once. This provides an efficient
numerical method for the calculation of the MPEP.

Now, we show that the same procedure can be applied
to calculate the escape from a chaotic attractor. To do this,
one has to select the initial condition x1 as a preimage of
the PHT closest to the basin boundary, since there noise
causes the largest deviation [23]. This means that the
energy to leave the CA is the lowest. The parametrization
for �1 remains unchanged, since every point on the CA
has a well-defined largest eigenvalue.We first demonstrate
this for one of the fundamental dynamical paradigms, the
Hénon map [26]:

xn�1 � a
 x2n � byn � �n; yn�1 � xn: (5)
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We choose the parameters a � 1:3 and b � 0:29 for
which a CA and another attracting state at infinity coexist.
In Fig. 1, the CA is plotted, as well as its basin of
attraction, and the saddle point on the boundary (square).
We also include the PHT closest to the boundary together
with its tenfold preimages (circles) and the MPEP
(crosses). The latter is found by iterating Eq. (3) at the
tenfold preimage of the PHT and by looking for the
absolute minimum when changing �1 as described above.
As it can be seen, the MPEP moves initially very close to
the deterministic dynamics yet it deviates increasingly
with every iteration (as expected, since otherwise there
were no escape).

At the PHT the MPEP already differs considerably
from it. Only there, it is for the first time located outside
the CA and advances then, following the elongated im-
ages of the PHT (depicted as diamonds), to the basin
boundary. From there it approaches the saddle point lo-
cated on the basin boundary. We emphasize that it is not
presupposed that the MPEP leaves the CA in the vicinity
of the PHT. We simply use a preimage of the PHT as the
initial condition x1 and look for the optimal solution of
Eqs. (3) and (4). The fact that the MPEP is indeed follow-
ing the structure of the PHT very closely (preimages and
images) is thus a confirmation of our claim.

To shed further light on this general mechanism, the
stepwise action Sn � 1

2�
T
n�n is plotted in Fig. 2. There is

only one large peak (step 10) where the MPEP moves
234101-2



FIG. 3 (color online). The MPEP is depicted with crosses,
connected through a dashed line to guide the eyes. The escape
path, as obtained from a Monte Carlo simulation with a noise
strength of D � 2:4� 10
4, is shown with squares. An un-
stable period-9 orbit is displayed with diamonds.
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FIG. 2. The stepwise action Sn � 1
2�

T
n�n for the Hénon map.

At each time step, the value of the graph corresponds to the
optimal force �n, as a result of the optimal solution of Eqs. (3)
and (4). The inset shows the data in semilog scale.
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away from the CA close to the PHT. Afterwards, the
required energy drops off exponentially, since the
MPEP follows a relaxational path. It is important to
note that this scenario differs from the one of the attractor
deformation. In the latter, the trajectory deviates from the
CA starting at the PHT, while in our case the MPEP
departs already at the preimages (cf. Fig. 2, inset) and is,
when passing the PHT, a finite distance away. This is the
reason why we have to start iterating Eq. (3) at some
preimage of the PHT. However, also by using only the
fivefold preimage of the PHT, the same MPEP was ob-
tained. Thus, neither the exact number of preimages nor
the accurate determination of the PHT is crucial—an
indication about the robustness of the method.

In Fig. 3, the MPEP is compared with a direct Monte
Carlo simulation of the escape trajectory. The simulation
was carried out with a noise strength of D � 2:4� 10
4,
resulting in a trajectory of length 2:5� 1012. One sees a
strikingly good agreement of about 15 iterations before
the path approaches the saddle point, reaching back to the
tenth preimage of the PHT. This remarkable coincidence
of the simulated path with the MPEP corroborates the
general validity of the procedure.

To connect the MPEP with the low-period unstable
periodic orbits embedded in the CA, we calculate all
periodic orbits up to period 20 [27]. Only one periodic
orbit is found to be close to the MPEP, having period 9. It
is also included in Fig. 3. Thus, if one had adopted the
previous method of finding periodic orbits close to the
MPEP by using stochastic simulations of the system, one
might have been led to conclude that the MPEP starts at
that period-9 orbit. However, such a reasoning obscures
the general deterministic structure of the MPEP with
respect to the PHT, as presented in this work.
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Next, we exemplify the method with the Ikeda map
[28], a discrete model of a laser pulse in an optical cavity.
With complex variables, it has the form

z n�1 � a� bzn exp
�
i�


i�

1� jznj2

�
��n; (6)

where zn � xn � iyn is related to the amplitude and phase
of the nth laser pulse exiting the cavity. The parameter a
is the laser input amplitude and (1
 b) the damping,
while the empty cavity detuning is given by � and the
detuning due to a nonlinear dielectric medium by �.

We fix the parameters at a � 0:92, b � 0:9, � � 0:4,
and � � 6:0. For the noise-free system, two stable states
are present, a fixed point and a CA. In Fig. 4, we present
the result for the Ikeda map, analogously to Fig. 1. The
CA, the basin of attraction, and the saddle point on the
boundary (square) are depicted. Also shown is the PHT
closest to the boundary together with its fivefold prei-
mages (circles) and the MPEP (crosses). We include two
period-5 orbits as well (triangles), which are located near
the images of the PHT. The behavior of the MPEP and the
optimal force (not shown) is qualitatively the same up to
where the path reaches the PHT. Then it passes very close
to 2 unstable period-5 orbits, which are outside the CA,
before it approaches the basin boundary. This is so be-
cause they happen to be located exactly at the regions of
phase space where the noise elongations attain a maxi-
mum, which occurs close to the images of the PHT [23].
The passing of the MPEP through another invariant set
was also found in a different system [21], as well as in the
more complex situation when there exists a chaotic saddle
234101-3



FIG. 4 (color online). CA for the Ikeda map with a � 0:92,
b � 0:9, � � 0:4, and � � 6:0. The hatched region marks the
basin of the fixed point located at �x; y	 � �2:995; 3:947	.
Circles depict the PHT at �x; y	 � �1:327; 0:559	 together with
its fivefold preimages (numbered 
1; . . . ;
5). The MPEP is
shown with crosses, connected through a dashed line to guide
the eyes. In addition, two unstable period-5 orbits are displayed
with upward and downward triangles, respectively. The saddle
point on the boundary is marked with a square.
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[29]. It does not happen for the Hénon map though, since
all the unstable periodic orbits lie, for the present pa-
rameter values, on the CA.

In conclusion, we have unveiled the general mechanism
of noise-induced escape from a nonhyperbolic CA. It is
shown that the MPEP exits at the vicinity of the PHT
closest to the basin boundary. Our findings are established
by solving unambiguously the auxiliary Hamiltonian
system, which yields the exact description in the low
noise limit. This has, for the first time, been established
without taking recourse to Monte Carlo simulations, and
only the knowledge of the deterministic structure of the
PHT is required. This mechanism gives a robust practical
procedure and should also be able to be confirmed experi-
mentally [7,24]. It is advantageous both for stabilizing
systems and for energy-optimal switching between dif-
ferent states (cf. [21]).
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