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We treat the Kapitza-Dirac diffraction effect observed recently by Batelaan et al. using a newly
developed nonperturbative quantum-field scattering theory. Our theory shows that an electron beam
passing perpendicularly through a focused standing light wave can produce diffraction patterns. Our
theory predicts (1) the minimum value of the ponderomotive energy is � �h!�2=mec

2, (2) the critical laser
intensity above which the first pair of electron diffraction peaks will occur, and (3) the existence of
sidebands in the electron spectra separated far from the central band by a momentum of several
hundred photons. Our theory provides a unified explanation of the experimental results of Bucksbaum
et al. and Batelaan et al.
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lows: What is the relationship, if any, between the obser-
vation of Batelaan and that of Bucksbaum?

angular momentum, the quantum-field Volkov states
and their energy eigenvalues were derived as [11]
Recently, Batelaan et al. [1] observed a resolved dif-
fraction pattern formed by electrons passing through a
standing-wave light beam. The origin of their experiment
is the suggestion first proposed by Kapitza and Dirac
(KD) in 1933 that electrons could pass through and be
reflected by a standing-wave light [2], with incident and
reflection angles subject to Bragg’s law, analogous to
diffraction in x-ray crystallography. After the invention
of the laser, several experimental attempts were made
to observe this effect, but without success [3,4]. The
deep splitting of photoelectron angular distributions in
standing-wave multiphoton ionization observed by
Bucksbaum et al. [5] was the only evidence supporting
KD’s conjecture. (Previous studies on the KD effect were
summarized in a review article [6].)

Early papers on the KD effect theory [7–10] are largely
based upon perturbative quantum mechanics, with a
classical treatment of the light fields. Recently, Guo [11]
analyzed the treatment of Guo and Drake [12] of the
splitting observed by Bucksbaum et al. [5] and predicted
Bragg-like electron scattering in a standing light wave.
The treatment of Guo and Drake [12] is based on a non-
perturbative quantum electrodynamic scattering theory
proposed by Guo, Åberg, and Crasemann (GAC) [13],
where the Volkov states play a role as intermediate states.

The recently observed electron diffraction pattern [1]
appears similar to a classical thin-slit interference pat-
tern, with the signals dropping sharply away from the
center. The momentum transfer between two neighboring
peaks is the momentum of two photons. In contrast,
Bucksbaum’s observed angular splitting corresponds to
500–2000 transferred photons, but without observing
diffraction peaks in the middle. The question is as fol-
0031-9007=04=92(23)=233603(4)$22.50
The full ponderomotive energy of the electrons in the
laser intensity used in Batelaan’s experiment may cause a
splitting as the one observed by Bucksbaum et al. [5]. A
simple estimate shows that the two splitting peaks of
Bucksbaum are located at the position of the 7th and
8th of Batelaan’s diffraction peaks, corresponding to
2up � 0:000 567. This indicates that Bucksbaum’s split-
ting peaks must be located at the two far sides of
Batelaan’s diffraction peaks. According to the analysis
presented here, the diffraction patterns will not always
resemble those from a thin slit. With an increased laser
intensity, the envelope of the diffraction pattern must
show a crescent line shape: the two far sides may have
stronger diffraction signals than those in the middle. The
patterns, as a function of intensity, will eventually pass
over to Bucksbaum’s splitting.

In this Letter, following the nonperturbative scattering
approach [11–13] with a refined treatment of ponderomo-
tive energy, we develop a KD diffraction theory. The
transition rate in momentum space dW=d3Pf is

dW

d3Pf
�

4

T
j	fi � �fij2;

where T is total interaction time and 	fi is the Møller
operator matrix element

	fi �
X

��;E��Ei�

h�fj
�ih
�j�ii;

where j
�i are quantum-field Volkov states.
In the experiments of Bucksbaum et al. [5] and

Batelaan et al. [1], the standing waves were made by
two opposite propagating laser beams. When the two
beams are circularly polarized with the same spatial
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where P� is the electron on-mass-shell momentum with
� denoting different Volkov states, k stands for the
photon momentum; Na1 and Na2 are number operators
of the original two photon modes in standing wave, while
jn1; n2ic are the Fock states of the photon operators c1 �
2�1=2�a1 � a2�, c2 � 2�1=2�a1 � a2�. The c1 and c2 pho-
tons can be called antinode and node photons, respec-
tively. The phased Bessel functions are defined by

Xj�z�  Jj�jzj�eij arg�z�; with z �
2

���
2

p
jej�

me!
P� 
 �;

where � � 2�1=2��x � i�y� denotes the circular polariza-
tion vector and 2� is the classical amplitude for the
vector potential of each photon mode, and 2up!  2Up
is the total ponderomotive energy of the two traveling
laser modes. This wave function has a unique advantage
that its momentum phase contains an operator difference,
k�Na1 � Na2�, allowing an arbitrarily large momentum
transfer between the two laser modes [12]. It has no
classical-field correspondence.

The Møller operator matrix element reads

	fi �
�2��3

Ve
��Pi � Pf ��fk��ik�Xq�z�; (2)

where Xq�z� �
P

jX�j�z�
�Xq�j�z�Fq, and the factor Fq is

given by [11]

Fq 
X
n2

hm1; m2jn1 � s; n2ichn1 � j; n2jcl1; l2i

�
1

�

�
sin���f � �i��=2	

�f � �i
�

sin���f � �i��=2	

�f ��i

�

� �l1�l2�m1�m2;q; (3)

in which �i  l2 � l1 � l1 � l2 � m1 �m2, �f  m2 �
m1 � l1 � l2 are the initial and final photon-number
differences between the two traveling modes. The � sym-
bol gives the value of the net transferred photon number
q  j� s with j being the absorbed antinode-photon
number when the electron enters the radiation field and
s the emitted antinode-photon number when it leaves the
field. The relation q � �f � �i � 2�l2 �m2� shows that
q has to be odd for nonvanishing Fq.

In the entry process, the energy conservation required
by the scattering theory and the momentum conservation
specified by the � function are

P2
�

2me
� �2up � j�! �

P2
i

2me
; P� � Pi � �ik:

The quadratic equation for �i is

�2
i � 2�ijPij cos$i=!� 2me�2up � j�=! � 0:
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Thus, the existence condition for �i is

�2up � j�! �
P2
i

2me
cos2$i;

which leads to 2up � j < 0 for a perpendicular entry
where $i � �=2. To enter the field, the electron has to
absorb at least one antinode photon such that j �
1; 2; 3; . . . . The absorbed photons contribute 2up! to
the ponderomotive energy and �j� 2up�! to the elec-
tron kinetic energy. The electron is accelerated, from
the relation jP�j > jPij, with a large deflection
due to the extra antinode-photon absorption correspond-
ing to a background photon-number change �i �

�
�������������������������������������
2me!�1�j� 2up�

q
. In the experiment of Batelaan

et al., 2up is about 0.000 567, which leads �i �

�
���������������
2me=!

p
� �663. In the 4-momentum space, the ab-

sorption of one photon in the energy direction will cause a
photon-number change

���������������
2me=!

p
in the k direction. For

j � 2; 3; . . . , the background photon-number change is
even much greater. The electron with such large deflec-
tion may exit the field directly to form two jth-order
sidebands in the electron spectrum, or exit with a
s-photon emission to form two qth-order (noting q  j�
s) sidebands in contrast to the central band observed by
Batelaan et al.

The momentum and energy conservation relations be-
tween the initial and the final states are

P2
i

2me
�

P2
f

2me
� �s� j�!; Pi � Pf � ��f � �i�k; (4)

��f ��i�
2 � 2��f � �i�jPij cos$i=!� 2meq=! � 0;

which determines the value of �f directly from parame-
ters of the initial state.

From Eq. (4), in the j � s case, we have either �f � �i
the penetration case or ��f � �i� � �2jPij!�1 cos$i
the reflection case satisfying the Bragg’s law. In the j �
1; s � 0 case with a tiny 2up (say, about 0.0005), �f � �i
satisfies almost the same algebraic equation satisfied by
�i, which leads to �f � 0 and makes each sideband
irresolvable as one bright line.

From the preceding discussion we conclude that in the
case of strictly antiparallel standing light wave, an elec-
tron beam passing through the standing wave (injected
perpendicularly) will not produce diffraction peaks in the
central band; it will, however, produce sidebands. The
sidebands are located at two sides, far away from the
central position. For nonperpendicularly injected electron
beam, Bragg’s scattering angles are enforced to guaran-
tee a stimulated emission [2].

By analyzing either the exit or the entry process, we
can find out the minimum quantum of the ponderomotive
number up. Consider the entry process: The energy con-
servation for electron entry without an extra absorption of
(antinode) photon is �P2

i =2me� � �P2
�=2me� � 2up!. To
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form a Volkov state in which the electron momentum is
perpendicular to the photon momentum k, the electron
has to enter the field with the Bragg’s angle. The mini-
mum background photon-number change is 2. By momen-
tum conservation P2

i � P2
� � ��ik�2 (�i � �2;�4;

�6; . . . ) where �i is the change of the background photon
number. Evidently, it can only be an even number without
extra antinode-photon absorption and emission. Com-
bining the above two equations, we have the value of
the ponderomotive parameter for one laser beam

up�d� � d2
!
me

; �d � j�ij=2 � 1; 2; 3; . . .�:

When d � 1, one gets the minimum quantum of the
ponderomotive parameter, up�1� � !=me, which corre-
sponds to the first pair of diffraction peaks in the experi-
ment of Batelaan et al. If this pair is the only pair
observed, one gets the critical laser-beam intensity

Ic �
!4

2�e2

using the formula I � upme!
3=2�e2. When the laser-

beam intensity falls below this critical value, no electron
diffraction peaks can be formed.

Now we turn our attention to KD diffraction in a
standing-wave focusing to a thin waist. To simplify the
description, in our model system we choose two standing
waves (four photon modes) to interact with the electron.
We also assume that there is no interaction between the
two standing waves through the electron. The incident
electron beam is assumed to be perpendicular to the first
pair of standing waves, while the second pair of standing
waves is oriented at a slight angle � to the first one. The
latter is labeled with a prime. In this case, the quantum-
field Volkov solutions and their energy eigenvalues are


� � V�1=2
e ei�P��k�Na1

�Na2
��k0�N0

a1
�N0

a2
�	
r

X
j;j0

jn1 � j; n2ic

� X�j�z�jn01 � j0; n02icX�j0 �z0�; (5)

E� �
P2
�

2me
� �n1 � 1=2�!� �n2 � 1=2�!� 2up!

� �n01 � 1=2�!� �n02 � 1=2�!� 2u0p!;

where k0 � k� �!e with jk0j � jkj � !, e being a unit
vector, and � � 1.

The Møller operator matrix element reads

	fi �
�2��3

Ve
��Pi � Pf ��0k0 � �k�Xq�z�Xq0 �z0�;

(6)

with �0  �0
f � �0

i and �  �i � �f.
Using the momentum conservation between the initial

and the intermediate states specified by the momentum
delta function and the definition of the diffraction order d,
we obtain the following equation set:
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��i ��0
i�
2�2�0

i�jPij=!�2me��2umax
p � j� j0�	=! � 0;

��f ��0
f� � ��i � �0

i� � 2d �d � 0;�1;�2; . . .�;

(7)

where the incident angle of the electron beam $i is set as
�=2 for the perpendicular entry case. We consider an
incident electron in the entry process, which absorbs
one extra antinode photon from the first pair of standing
waves, then emits another extra antinode-photon into the
second pair of standing waves. Thus, we have j � 1; j0 �
0 in the entry process and s � 0, s0 � 1 in the exit
process. One should note that absorption or emission of
an antinode photon will cause several hundred photon-
number changes between the two traveling modes. In
this equation set, with choosing two independent integer
variables �0

i � 0;�2;�4; . . . and �f � 0;�2;�4; . . . ,
we have two equations to solve for two unknown varia-
bles �i and �0

f. With given �0
i and �f, the solutions are

�i � �
���������������������������������������������������������������������������
2me!�1�1� 2umax

p � � 2�0
i�!

�1jPij
q

��0
i; (8)

�0
f � 2d� �i � �0

i ��f;

where �i may take the closest odd numbers. From the
overall energy conservation jPfj

2=2me � jPij
2=2me �

�q� q0�!, where q  j� s � 1 and q0  j0 � s0 � �1,
we have the exact relation jPfj � jPij. From the overall
momentum conservation given by the Møller operator
matrix element, and neglecting the �2 term, we have an
approximate relation jPfj cos$f � 2!d to determine
cos$f. Combining the overall energy and momentum
conservations, we find that the angle � is uniquely deter-
mined by the diffraction order via the relation

� �
2!d2

jPij�
0
; j�j � �max: (9)

With a given �0
i and �f, the angular distribution, when

q � 1, q0 � �1, and $i � �=2, is

dW
d	

�
4

T
�2��3

Ve
jX�1�zi�X0�zf�X0�z0i�X�1�z0f�F1F�1j

2

� ��’f � ’i��
�
cos$f �

2!d
jPfj

	
: (10)

The total transition rate is obtained by summing over all
the possible �0

i and �f. In our calculations, the angle
between the two pairs of standing waves changes, accord-
ing to Eq. (9), with the diffraction order and value of �0,
while �max sets the constraint for �0 which should be
large enough for a fixed diffraction order to satisfy the
inequality. For a Gaussian beam, �max � )=�w0, where
w0 is the minimal radius of the laser beam. In the experi-
ment of Batelaan et al., �max � 800 nm=��62:5 �m� �
0:004. The computational results are shown in two fig-
ures. Figure 1 is our theoretical reproduction of the dif-
fraction peaks observed by Batelaan et al. The diffraction
233603-3



FIG. 1. The calculated KD diffraction pattern for laser in-
tensity I � 2� 1014 W=m2, laser wave length 532 nm. The
electrons are of kinetic energy 380 eV and are vertical inci-
dent, and the electron beam is assumed to be a Gaussian
distributed spatially.

FIG. 2. The calculated KD diffraction pattern for laser in-
tensity I � 2� 1015 W=m2, and the other conditions are the
same as those in Fig. 1.
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peaks weakened away from the center, while the central
peak is the penetration peak without diffraction. Figure 2
is a calculation for the laser beam with higher intensity.
The envelope of the diffraction patterns, without consid-
ering the central penetrating peak, shows a crescent line
shape. The two maxima on the two sides of the crescent
line corresponds to Bucksbaum’s splitting.

In summary, we conclude the following: (1) For a
strictly parallel standing light wave, a perpendicular
incident electron beam cannot diffract due to energy-
momentum conservation; while a nonperpendicular in-
cident electron beam can diffract according to Bragg’s
law. (2) For a focusing standing light wave with a thin
waist, a perpendicular incident electron beam can diffract
to form the central band of the diffraction pattern as
observed by Batelaan et al. (3) The ponderomotive num-
ber has a minimum up�1� � �h!=mec

2 corresponding to
the first pair of electron diffraction peaks, and the other
smaller ponderomotive numbers up�d� � d2 �h!=mec

2

(d � 2; 3; 4; . . . ) correspond to the other pairs of the
diffraction peaks. (4) There is a critical laser intensity,
I � �h2!4=�2�e2c�, below which no diffraction peaks can
be formed. (5) With increased laser intensities, the enve-
lope of electron diffraction peaks, in the central band,
will show a crescent line shape. Batelaan’s diffraction
peak corresponds to a decay of a partial ponderomotive
energy Up � up�d� �h! while Bucksbaum’s splitting cor-
responds to a full ponderomotive decay. Here the ‘‘pon-
deromotive decay’’ means when an electron leaves the
field, the ponderomotive energy turns back to the light
field. (6) In addition to the central band observed by
Batelaan et al., we predict that the electron diffraction
pattern will have sidebands located several hundred pho-
ton momenta away from the central position. They should
be observable as a bright signal, but irresolvable in finer
peaks.
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Note added.—The most recent experimental results of
the KD effect of the Bragg’s scattering type [14] will be
discussed in our future publications.
*To whom correspondence should be addressed.
Electronic address: dsguo@grant.phys.subr.edu

[1] D. L. Freimund, K. Aflatooni, and H. Batelaan, Nature
(London) 413, 142 (2001).

[2] P. L. Kapitza and P. A. M. Dirac, Proc. Cambridge Philos.
Soc. 29, 297 (1933).

[3] L. S. Bartell, R. R. Roskos, and H. B. Thompson, Phys.
Rev. 166, 1494 (1968); L. S. Bartell, Phys. Lett. A 27, 236
(1968); H. Schwarz, H. A. Tourtellotte, and W.W.
Gaertner, Phys. Lett. 19, 202 (1965).

[4] Y. Takeda and I. Matsui, J. Phys. Soc. Jpn. 25, 1202
(1968); H.-Chr. Pfeiffer, Phys. Lett. A 26, 362 (1968).

[5] P. H. Bucksbaum, D.W. Schumacher, and M. Bashkansky,
Phys. Rev. Lett. 61, 1182 (1988).

[6] H. Batelaan, Contemp. Phys. 41, 369 (2000).
[7] M.V. Fedorov, Opt. Commun. 12, 205 (1974); R. Gush

and H. P. Gush, Phys. Rev. D 3, 1712 (1971).
[8] E. A. Coutsias and J. K. McIver, Phys. Rev. A 31, 3155

(1985).
[9] R. Z. Olshan, A. Gover, S. Ruschin, and H. Kleinman,

Phys. Rev. Lett. 58, 483 (1987).
[10] L. Rosenberg, Phys. Rev. A 49, 1122 (1994).
[11] D. S. Guo, Phys. Rev. A 53, 4311 (1996).
[12] D. S. Guo and G.W. F. Drake, Phys. Rev. A 45, 6622

(1992).
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