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Inadequacy of Perfect-Reflector Models in Cavity QED
for Systems with Low-Frequency Excitations
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It is shown that the model of perfectly reflecting boundaries widely employed in cavity QED is
unsuitable for systems that have long-wavelength excitations. A prime example is a free charged
particle near a reflecting wall. Modeling the wall as perfectly reflecting from the outset ignores
evanescent waves that couple to the particle through virtual excitations at low energies, which can lead
to errors in order of magnitude and even sign. The example of a free electron near an imperfectly
reflecting wall characterized by a constant frequency-independent refractive index n is investigated in
detail by determining its energy shift relative to an electron in vacuum through both nonrelativistic and
relativistic calculations.
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atom interacting with a single imperfectly reflecting wall boundaries (cf., e.g., Ref. [5]) one cannot fail to notice that
Quantum electrodynamics (QED) has been spectacu-
larly successful in describing the interaction of charges
and electromagnetic fields. Arguably its two most famous
tests are the Lamb shift in hydrogenlike atoms and the
g� 2 anomalous magnetic moment of the electron.
However, high-precision experiments do not and cannot
measure these quantities in isolation, but are subject to a
variety of apparatus-dependent corrections. One type of
corrections comes about, for example, because of the
presence of polarizable, magnetizable, or conducting
materials in the apparatus, which alter the electro-
magnetic surroundings of the system under investigation
compared to the same system in free space. In another
strand of research developments, optical and microwave
cavities have become invaluable tools for manipulating
quantum systems, admitting a whole range of unconven-
tional states and processes (cf., e.g., Ref. [1]). Both
apparatus-dependent corrections in high-precision ex-
periments and systems purposely confined in cavities
are covered by what is now commonly known as the
theory of cavity QED. The success of QED has been
carried forward to cavity QED, for example, by the
measurement of the Casimir-Polder force between an
atom and a surface [2,3]. For g� 2 experiments the
task of cavity QED has been the estimation of small
corrections [4].

The model that is most frequently employed for de-
scribing the cavity walls is that of a perfectly reflecting
surface; it appears to capture the essence of the impact
that the cavity has on the electromagnetic field. The fact
that real materials do not reflect perfectly is commonly
ignored because physical intuition suggests that cavity-
QED effects reach a maximum for perfectly reflecting
walls, and for systems with imperfectly reflecting walls
they differ merely by a minor numerical factor. This is,
indeed, confirmed by explicit analytical calculation for an
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that is described by a constant refractive index n allowed
to vary continuously between 1 and infinity [5]. For n � 1
the wall is electromagnetically transparent and the en-
ergy level shift in the atom vanishes, for n! 1 one
recovers the result of Casimir and Polder for the level
shift of an atom in the vicinity of a perfectly reflecting
wall [2], and for 1< n<1 the result for the level shift
smoothly interpolates between zero and the Casimir-
Polder result. If one chooses to quantize the electro-
magnetic field by using photon annihilation and creation
operators and normal modes, then a corroborating ex-
planation of the underlying physical processes in the
perfect-reflector approximation readily offers itself. Let
us consider a setup where a medium is located at z > 0
and the space z < 0 is just vacuum. If the medium has a
finite refractivity and reflectivity one has to include both
left- and right-incident modes. Some of the right-incident
modes suffer total internal reflection at the interface at
z � 0, and their components on the vacuum side z < 0 are
evanescent rather than traveling waves [6]. As the refrac-
tive index n increases, a larger and larger fraction of the
right-incident modes becomes evanescent for z < 0, and
simultaneously the decay lengths of the evanescent
modes become shorter and shorter. In the limit n! 1
all right-incident modes are evanescent on the vacuum
side, and their decay lengths are tending to zero. Thus, an
atom that is a little distance away from the interface on
the vacuum side feels nothing of these right-incident
modes, and one might as well ignore them. This is exactly
what the perfect-reflector model does from the outset; for
a single wall it consists only of left-incident modes that
satisfy the boundary conditions of a perfect reflector at
z � 0: the electric field parallel to the interface and the
magnetic field perpendicular to it must vanish. Compar-
ing perfect-reflector calculations (cf., e.g., Sec. I.2 of [2])
with those for the same system but imperfectly reflecting
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the perfect-reflector model is also most attractive because
of its great technical simplicity.What is almost a back-of-
the-envelope calculation in the perfect-reflector model
becomes a major undertaking for weeks or months for
imperfect reflectors.

It is the purpose of this Letter to point out that,
apparently unbeknown to previous workers in the field,
there are a variety of systems that cannot sensibly be
described in cavity QED by using the perfect-reflector
model. Indeed, if one compares, for example, the analo-
gous calculation to that of Casimir and Polder [2] for a
free electron near a perfectly reflecting wall [7] with the
results of a calculation that models the wall as a non-
dispersive dielectric of finite reflectivity, one finds dis-
agreement of the first with the limit of unit reflectivity in
the results of the latter, as we shall show in the following.

To make the argument we concentrate on the simplest
possible system: a free electron a distance a away from a
perfectly reflecting wall. Also for simplicity we shall
model the imperfectly reflecting wall by a nondispersive
and nonabsorbing dielectric half-space in the region
z > 0. Thus, the dielectric is characterized by a single
number, its refractive index, which is real, the same for all
frequencies, and can be anything between 1 and infinity.
The interaction between the electron and the electromag-
netic field, which in turn couples to the reflecting wall,
can be described by the minimal-coupling interaction
233602-2
Hamiltonian

Hint � �
e
m
p �A� Vimage�r�; (1)

where p is the electron momentum operator, A is the
quantized electromagnetic field, Vimage�r� is the potential
due to the Coulomb interaction of the electron with its
image on the other side of the interface, and e and m are
electron charge and mass. The energy shift due to the
electrostatic interaction of the electron with its image is
straightforward to work out and agrees with the classical
value,

�Eimage � �
e2

16�"0a
n2 � 1

n2 � 1
: (2)

In the limit n! 1 this agrees, of course, with the elec-
trostatic interaction energy of the electron and its image
on the other side of a perfectly reflecting boundary.

To evaluate the radiative energy shift due to the p �A
term in Hint one needs to quantize the electromagnetic
vector field. This is done most simply by an expansion in
terms of photon annihilation and creation operators and
normal modes, which each consist of an incident, a re-
flected, and a transmitted wave. For the dielectric we
dispense with writing down the normal mode expansion,
as it is lengthy but straightforward to derive [6], and refer
the reader to, e.g., the Appendix of Ref. [8]. For a perfectly
reflecting wall the mode expansion reads in Coulomb
gauge
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(3)
which is also what one gets if one takes the limit n! 1
in the mode expansion for the dielectric case.

The lowest-order contribution to the radiative energy
shift is second order in e,
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e2
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 0;�k;��

Z jh 0; 1k;�jp �Aj ; 0ij2

p2

2m� 
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: (4)

To be able to evaluate this expression we make the no-
recoil approximation; i.e., we neglect the change in the
momentum of the electron after a collision with a photon,
so that the denominator of the above equation becomes
simply � �h!. Then the calculation is straightforward. For
the perfectly reflecting case we substitute the modes (3)
and obtain
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2
zi; (5)

which agrees with previous results for this model [7]. For
the electron near the dielectric wall the calculation is a
little longer but still straightforward. We get
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Here the ! integral is over the frequency of the (virtual) photon exchanged between atom and wall, and the � and �
integrals stem from integrations over angles of incidence. Doing the ! integrals first one can carry out all integrations
analytically and finds
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The limit n! 1 of this result obviously does not repro-
duce the radiative shift (5) calculated in the perfect-
reflector model: the coefficient of hp2

k
i has a different

sign and that of hp2
zi differs by a factor of 2.

One can compare the two calculations step by step in
an effort to try and find the reason for this discrepancy.
In the perfect-reflector model right-incident modes are
neglected from the outset, and thus the shifts due to
evanescent modes do not arise. That this is a serious er-
ror is obvious from the fact that �ev

k
and �ev

z do not vanish
in the limit n! 1, although in the identical calcula-
tion for the energy level shift of an atom, which gives
the same integrals as in Eq. (6) but with an additional
factor !=�!�!ji� incorporating the atomic transiton
frequency !ji, they do vanish in this limit [5]. One could
believe that, having ignored the evanescent modes, one
should at least find agreement between the shifts due to
the traveling modes �trav

k
and �trav

z for n! 1 and the
perfect-reflector result (5). This is, indeed, the case for
the parallel direction but not for the z direction for
which the shifts disagree in sign. One can see why by
inspecting (6): Calculating the shift from the perfect-
reflector modes (3) leads to identical expressions but
with the limit n! 1 taken in the integrand. For �trav

k
this goes well, but for �trav

z the limit n! 1 does not
commute with the limit �! 0 of the angular integra-
tion, which corresponds to grazing incidence. Thus, the
perfect-reflector model does not just go wrong by ignor-
ing the evanescent modes but also mishandles traveling
modes at grazing incidence.

One should, of course, be careful and examine all pos-
sible sources of error in the calculation for the dielectric
wall. By placing a cutoff on the! integration, one quickly
convinces oneself that the delta functions arising from
the ! integration in �trav

k
and �trav

z cause no problems.
Likewise, one can restore the denominator of (4) and see
that the no-recoil approximation neglects terms of order
1=am (the ratio of the electron’s Compton wavelength
to the distance from the wall) and ln�am�=am but other-
wise does not affect the result and, in particular, not the
limit n! 1.

Since the nonrelativistic calculation offers no clue as
to the origin of the discrepancy between the perfect-
reflector and dielectric models, it makes sense to calcu-
late the energy shift in relativistic quantum field theory.
There the shift manifests itself in boundary-dependent
corrections to the self-energy operator. The Feyman
diagram representing the self-energy in the lowest non-
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vanishing order is

The electron line ( ) is unaffected by the
presence of the boundary and represents just the stan-
dard free electron propagator SC�x� x0�=i. The photon
line ( ) stands for the photon propagator
iDC

 !�x; x0�. The vertex is the standard QED vertex e� .
The expression for the electron self-energy is thus

#�x; x0� � �ie2� SC�x� x0��!DC
 !�x; x

0�: (8)

The photon propagator is the only part that is sensitive to
the presence of the cavity wall; it can be assembled from
the normal modes for the electromagnetic field [5,6] by
taking the vacuum expectation value of the time-ordered
product of two field operators,

D !C�x; x0� � �ih0jTA �x�A!�x0�j0i:

If both points x and x0 are outside the dielectric (i.e., for
x3; x03 < 0) the photon propagator can, just like in the case
of a perfectly conducting cavity [9], be written as a sum of
the propagator of the free photon field DC�0��x� x0� and a
boundary-dependent correction D�x; x0�. Thus, to calcu-
late the boundary-dependent part of the electron self-
energy we need to substitute D�x; x0� for DC�x; x0� in (8).
The resulting expression is translation invariant in all
but the z (or 3) direction, so that we have the Fourier
representation

#�x; x0� �
Z d4q

�2��4
e�iq�x�x

0� ~##�q; x3 � x03�: (9)

We make a few basic assumptions and simplifications for
evaluating ~##�q; x3 � x03�: (i) since the electron is local-
ized a distance a away from the wall, we approximate
x3 � x03 � �2a, but we do not approximate x3 � x03;
(ii) we calculate on the average mass shell of the external
electron line, which is equivalent to the no-recoil ap-
proximation in the nonrelativistic calculation; (iii) we
evaluate the expressions asymptotically for a distance a
that is much larger than the Compton wavelength of the
electron; and (iv) in scalar denominators we neglect the
momentum of the electron parallel to the wall compared
to its rest mass.
233602-3



P H Y S I C A L R E V I E W L E T T E R S week ending
11 JUNE 2004VOLUME 92, NUMBER 23
The calculation is quite lengthy. Furthermore, it is complicated by the fact that the convergence of the integrals is
rather fragile and does not tolerate approximation in the integrands. The trick is to resort to methods of asymptotic
analysis that are specially suited to two-dimensional Fourier integrals [10].We shall report the details of the calculation
elsewhere [11] and here just cite the results. To lowest order in 1=aq0 (the ratio of the electron’s Compton wavelength to
the distance a from the wall), we find

~##�q;�2a� � �
e2

32�"0q0a

�
n2�n2 � 1�

�n2 � 1�2
qk � �k � 2

2n4 � n2 � 1

�n2 � 1�2
q3�3 � 2

n2 � 1

n2 � 1
q0�0

�
: (10)
The first term in the brackets is the radiative shift for
motion parallel to the wall, the second is the one for
motion perpendicular to it, and the third is the shift due
to electrostatic interactions of the electron with its image.
Substituting the self-energy correction (10) into the Dirac
equation for the electron and taking the nonrelativistic
limit, one sees immediately that the above result repro-
duces the energy shifts (7) and (2) of the nonrelativistic
calculation.

The field-theoretical calculation gives important in-
sight into the limit n! 1, which should correspond to
perfect reflectivity, because it reveals that the nature of
the point k0�0 subtly changes in this limit. On closer ex-
amination it turns out that the limits k0 ! 0 and n! 1
do not commute. In other words, it is low-frequency
photons that cause the problem, and whenever a system
has low-frequency excitations the ‘‘perfect-reflector’’
model that assumes n! 1 from the outset is physically
inapplicable as it ignores a part of the photon phase space
that is physically significant, namely, evanescent waves.
We shall demonstrate that this is, indeed, the case by
examining, for example, the evanescent part of the shift
contributed by TE (transverse electric or s polarized)
waves in the nonrelativistic calculation. Putting a lower
cutoff  on the integration over the photon frequency !
we have

�ev
k;TE ��

e2

4�2"0m2

�
Z 1

 
d!

Z 1

0
d�

��������������
n2 � 1

p
�

��������������
1� �2

q
e�2!a

���������
n2�1

p
�:

(11)

The integration over frequency is elementary, and the
subsequent integration over � can be expressed as the
difference between a Bessel and a Struve function [12]

�ev
k;TE��

e2

16�m2a

�
1

%

I1�%��L1�%�


�
%�2a 

���������
n2�1

p : (12)

Using the asymptotic properties of I1�%� and L1�%� [13],
we obtain the two different results

lim
 !0

�ev
k;TE � �

e2

32�m2a
;

lim
n!1

�ev
k;TE � � lim

n!1

e2

16�2m2a2 
��������������
n2 � 1

p ! 0:

(13)
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This exemplifies our observation that the perfect-reflector
limit n! 1 is not interchangeable with the lower limit
 ! 0 of the integration over photon frequencies.

In summary, we have shown that the ‘‘perfect-
reflector’’ model is inappropriate for systems with a gap-
less excitation spectrum. As regards experiments, the
most important consequences of this finding concern
cavity-QED corrections to the anomalous magnetic mo-
ment, resulting from vertex corrections, which hitherto
have been calculated only in the ‘‘perfect-reflector’’
model [4]. In order to obtain an estimate of the g� 2
corrections for unbound particles in physically realistic
systems one must calculate the vertex corrections for an
electron near an imperfect boundary [11].
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