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We analyze the effect of realistic noise sources for an atomic clock consisting of a local oscillator that
is actively locked to a spin-squeezed (entangled) ensemble of N atoms. We show that the use of
entangled states can lead to an improvement of the long-term stability of the clock when the
measurement is limited by decoherence associated with instability of the local oscillator combined
with fluctuations in the atomic ensemble’s Bloch vector. Atomic states with a moderate degree of
entanglement yield the maximal clock stability, resulting in an improvement that scales as N1=6

compared to the atomic shot noise level.
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the Ramsey time T. During the free evolution, the atomic
state and the LO acquire a relative phase difference �� �

Fig. 1(a). For example, dephasing of individual particles
results in an additional contribution �N=4	h��2i to the
Quantum entanglement is the basis for many of the
proposed applications of quantum information science
[1]. The experimental implementation of these ideas is
challenging because entangled states are easily destroyed
by decoherence. To evaluate the potential usefulness of
entanglement, it is therefore essential to include a realistic
description of noise in experiments of interest. Although
decoherence is commonly analyzed in the context of
simple models [2], practical sources of noise often possess
a nontrivial frequency spectrum, and enter through a
variety of different physical processes. In this Letter, we
analyze the effect of realistic decoherence processes and
noise sources in an atomic clock that is actively locked to
a spin-squeezed (entangled) ensemble of atoms.

The performance of an atomic clock can be character-
ized by its frequency accuracy and stability. Accuracy
refers to the frequency offset from the ideal value,
whereas stability describes the fluctuations around, and
drift away from, the average frequency. To improve the
long-term clock stability, it has been suggested to use
entangled atomic ensembles [3–5], and in this Letter we
analyze such proposals in the presence of realistic deco-
herence and noise. In practice, an atomic clock operates
by locking the frequency of a local oscillator (LO) to the
transition frequency between two levels in an atom. This
locking is achieved by a spectroscopic measurement de-
termining the LO frequency offset �! from the atomic
resonance, followed by a feedback mechanism that steers
the LO frequency so as to null the mean frequency offset.
The problem of frequency control thus combines elements
of quantum parameter estimation theory and control of
stochastic systems via feedback [6,7].

The spectroscopic measurement of the atomic transi-
tion frequency is typically achieved through Ramsey
spectroscopy [8], in which the atoms are illuminated by
two short, near-resonant pulses from the local oscillator,
separated by a long period of free evolution, referred to as
0031-9007=04=92(23)=230801(4)$22.50 
�!T, which is subsequently determined by measurement.
If a long time T is used, then Ramsey spectroscopy
provides a very sensitive measurement of the LO fre-
quency offset �! [9]. Here, we investigate the situation
relevant to trapped particles, such as atoms in an optical
lattice [11] or trapped ions [12]. In this situation, the
optimal value of T is determined by decoherence (caused
by imperfections in the experimental setup), which there-
fore determines the ultimate performance of the clock.

We consider an ensemble of N two-level particles with
lower (upper) state j#i (j"i). Adopting the nomenclature of
spin-1=2 particles, we introduce the total angular mo-
mentum (i.e., Bloch vector) ~JJ �

P
N
j�1

~SSj, where, e.g.,
ŜSjz � �j"ijh"j � j#ijh#j	=2. Initially, the state of the atoms
has mean h ~JJi along the z direction and hĴJxi � hĴJyi � 0.
Unavoidable fluctuations in the x and y components,
�Jx;y � �hĴJ2x;yi � hĴJx;yi

2	1=2 � 0, result in the so-called
atomic projection noise. These fluctuations give rise to
an uncertainty in the Ramsey phase ��R ’ �Jy=jhĴJzij as
indicated geometrically in Fig. 1 [3]. For uncorrelated
spins aligned along the z axis, the uncertainty from
independent spins are added in quadrature, resulting in
the projection noise �Jy �

����
N

p
=2 [10]. To reduce the

measurement error it has been proposed [5,13,14] and
demonstrated [15] to use entangled atomic states (so-
called spin-squeezed states), which have reduced noise
in one of the transverse spin components (e.g., Jy). Such
reduction introduces nonzero noise �Jz � �hĴJ2zi �
hĴJzi2	1=2 in the mean spin direction, which plays an im-
portant role below. Ideally squeezing gives an improve-
ment by a factor � �

����
N

p
�Jy=jhĴJzij, which can be as low

as � � 1=
����
N

p
for maximally entangled states [4].

Using a simple noise model, it was shown in Ref. [16]
that entanglement provides little gain in spectroscopic
sensitivity in the presence of atomic decoherence. In
essence, random fluctuations in the phase of the atomic
coherence cause a rapid smearing of the error contour in
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FIG. 1. (a) Representation of the probability distribution on
the Bloch sphere for a spin squeezed state j ��	i, with � �
N1=4 corresponding to the squeezing parameter � � N�1=4

(N � 10, both the initial state and the state just before detection
are shown for clarity). Thick lines indicate initial uncertainties
in ~JJ. (b) Noise spectra due to LO frequency fluctuations when
free running, when stabilized to uncorrelated atoms (� � 1),
and when stabilized to spin squeezed atoms (� � N�1=6), N �
103, and �T � 10�2. (c) Inverse fractional frequency stability
1=�y (arbitrary units) vs Ramsey time for white LO noise,
N � 105. Points: numerical simulations; lines: analytical re-
sults. Uncorrelated atoms (�, � � 1) and spin squeezed atoms
(�, � � N�1=4), both for linear feedback (full lines, empty
symbols) and nonlinear feedback (dashed lines, filled symbols).
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noise, where h��2i denotes the variance of the phase
fluctuations (increasing with T as h��2i � �T for white
noise, where � is the dephasing rate). In practice, the
stability of atomic clocks is often limited primarily by
fluctuations of the LO. As we show below, the LO fluc-
tuations result in the added noise �J2z h��2i. This added
noise is due to the error in the feedback loop, caused by
the initial longitudinal noise �Jz. For weakly entangled
states, the added noise is considerably smaller than in the
case of atomic dephasing and the use of entangled states
can lead to a significant improvement in clock stability.

In what follows, we outline a model that incorporates
the effects of atomic noise and spin squeezing as well as
that of the feedback loop. Before proceeding, we note that
qualitative considerations along these lines were noted in
Ref. [17]. The error signal [5] is defined as the difference
of populations in states fj"i; j#ig, measured at the end of
the Ramsey cycle. At the operating point, the error signal
vanishes on average for a perfectly locked LO. For a
realistic LO, the error signal measured at time tk is
determined by the operator
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ÊE�tk	 ’
XN
j�1

ŜSjz sin���j�tk	� � ŜSjy cos���j�tk	�; (1)

where ��j�tk	 is the phase acquired by the jth atom
during the interrogation time T and all operators
refer to the initial atomic state. We separate the phase
into two parts ��j � ��O � ��j

E, where ��O�tk	 �R
T
0 �!�tk � t	 dt is the phase due to the frequency fluctu-

ations �!�t	 of the LO, and ��j
E is a phase induced by

the interaction of the jth atom with the environment. In
order to lock the LO to the atomic frequency, the inter-
rogation time should be short enough that h���tk	2i & 1.
Expanding in terms of ���tk	, we find the measured error
signal,

E�tk	 ’ hĴJzi
�
��O�tk	 �

��O�tk	3

3!

�

�
XN
j�1

Sjz��
j
E�tk	

� �J y�tk	 � �J z�tk	��O�tk	� � � � � : (2)

Here �J z�tk	 � J z�tk	 � hĴJzi, where J z�tk	 and J y�tk	
are random numbers with a distribution corresponding
to the initial atomic state [we consider here states for
which hĴJyĴJzi � 0, so that we may treat J z�tk	 and
J y�tk	 as independent random variables]. The term multi-
plying hĴJzi in (2) is used to estimate the frequency offset,
while the remaining terms represent measurement noise.

The feedback is started at t � 0 and, at the end of each
Ramsey cycle, at tk � kT (k � 1; 2; . . . ), the detection
signal is used to steer the frequency of the oscillator to
correct for the fluctuations accumulated during the last
cycle �!�t�k 	 � �!�t�k 	 � �!�tk	, where t�k and t�k refer
to before and after the correction, and �!�tk	 is the
frequency correction. Assuming that negligible time is
spent performing the �=2 pulses and in preparing and
detecting the state of the atoms, the mean frequency
offset after running for a period � � nT is then

� �!!��	 �
1

�

Z �

0
�!�t	 dt �

T
�

Xn
k�1

�
��O�tk	

T
� �!�tk	

	
:

(3)

We begin by analyzing the simplest case of linear
feedback [in E�tk	] and later extend to the more opti-
mal nonlinear feedback case. With �!�tk	 �
��E�tk	�=�hĴJziT	, using (2) and substituting in (3), we
find, ignoring for now the ��O�tk	

3 term,

� �!!��	 �
�1

�hĴJzi

Xn
k�1

�
J y�tk	 � �J z�tk	��O�tk	

�
XN
j�1

Sjz��
j
E�tk	

	
: (4)

Note that the acquired offsets ��O�tk	=T (k � 1; . . . ; n)
due to LO frequency fluctuations are corrected by the
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feedback loop and do not appear in (4), while measure-
ment noise is added at the detection times tk. The first two
terms in (4) are uncorrelated for different tk since the
atomic noise for different detection events is uncorrelated.
If the dephasing noise is uncorrelated for different tk, then
the fractional frequency fluctuation (Allan deviation) [18]
is �y��	 � h�� �!!��	=!�2i1=2, and is given by

�y��	 �
��J2y ��J2z h��

2
Oi � ��hĴJ2zi	h��

2
Ei�

1=2

!
������
�T

p
hĴJzi

: (5)

Here � accounts for the possibility of collective decoher-
ence, so that for atoms dephasing collectively (indepen-
dently) �! 1 [�! �N=4	=hĴJ2zi]. The LO noise affects
the atoms in a fashion similar to collective dephasing, but
there is a significant difference in the way they enter
expression (5) (as hĴJ2zih��

2
Ei for environmental noise,

and as �J2z h��2
Oi for LO noise). The feedback loop results

in a large cancellation of the effect of the LO noise on the
stability, so that the uncanceled part of the noise is
proportional to �J2z � hĴJ2zi.

When decoherence is negligible, h��2
Oi � h��2

Ei � 0,
the long-term frequency stability is given by �y��	 �
�Jy=!

������
�T

p
hĴJzi as shown in Refs. [3,5]. For an uncorre-

lated atomic state, the stability improves with an increas-
ing number of atoms as N�1=2 [10]. The maximum
possible improvement using spin-squeezed states is a
factor of N�1=2, yielding a stability �y��	 / N�1 [4].

The best long-term stability is obtained with the
longest possible interrogation time T. When the interro-
gation time is limited by environmental decoherence, the
latter cannot be ignored. This corresponds to the situation
considered in Refs. [16,19], in which case no substantial
improvement is possible. In the practically relevant case
where the main source of noise is from the LO [12,20,21],
the situation is quite different. In this case, it is undesir-
able to use a very highly squeezed state with �Jy � 1
because it has a very large uncertainty in the z component
of the spin �Jz � N, which according to Eq. (5) has a
large contribution to the noise. A moderately squeezed
state can, however, lead to a considerable improvement in
the stability. This observation is the main result of the
present Letter.

To find the optimal stability, we first optimize (5) with
respect to the interrogation time. Considering white LO
noise and uncorrelated atoms first, we have �Jy �

����
N

p
=2

and �Jz � 0; Eq. (5) then predicts that �y��	 decreases
indefinitely as 1=

����
T

p
. To derive Eq. (5), however, we have

linearized the expression in Eq. (1), and this linearization
breaks down when the (neglected) cubic term in (2) is
comparable to the noise term that we retained, i.e., when
���tk	3 ��Jy=hĴJzi. In a more careful analysis [22] based
on Eq. (2), including perturbatively the nonlinear terms
in a stochastic differential equation, we find the optimal
time �T � �2�J2y=hĴJzi2	1=3. At this point, the stability is
given by �y��	 � �N�1=3�=!

������
��

p
, where
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� �
3

24=3
N1=3

��
�Jy
hĴJzi

�
4=3

�
24=3

3

�
�Jz
hĴJzi

�
2
	
1=2
: (6)

To evaluate the potential improvement in stability by
using squeezed states (i.e., the scaling with increasing
number of atoms N, in the limit N � 1), it is convenient
to use a family of states parametrized by a small number
of parameters. A one-parameter family of states that
includes the uncorrelated state as well as spin-squeezed
states is given by the Gaussian states j ��	i �
N ��	

P
m��1	me��m=�	2 jmi, where jmi are eigenstates of

the Jy operator with eigenvalue m and the total angular
momentum quantum number is J � N=2, and N ��	 is a
normalization factor. The transverse noise for these states
is given by �Jy � �=2. For a large number of atoms
N � 1, the uncorrelated state is well approximated by
j �� �

����
N

p
	i, while highly squeezed states are obtained

when �! 1. Within this family of states, the optimal
value is � ’ 1:42N�1=6 for � ’ 21=16N1=4 (�� N�1=4) giv-
ing a stability scaling as N�1=2. This represents an im-
provement by a factor of N1=6 compared to uncorrelated
states, for which � � 3=24=3 and the stability scales as
N�1=3. We emphasize that these results are derived as-
suming a linear feedback loop.

To confirm these predictions, we have made extensive
numerical simulations of the frequency control loop,
along the lines of Ref. [23]. The noise spectrum of the
free-running oscillator is defined by S�f	��f� f0	 �
h�!�f	�!�f0	i, where �!�f	 is the Fourier transform of
the stochastic process �!�t	. We generate the correspond-
ing time series and, at the detection times tk � kT, the
accumulated phase ��O�tk	 is calculated and the atomic
noise is generated from the probability distributions of J y
and J z. The error signal E�tk	 is found and a frequency
correction �!�tk	 is generated. The noise spectrum of the
slaved oscillator [see Fig. 1(b)] clearly shows that, while
for short time scales ( & T, high frequencies) the noise is
given by that of the free-running oscillator, at longer time
scales (lower frequencies) the oscillator is locked to the
atoms and the remaining (white) noise is determined by
the atomic fluctuations. The low-frequency white noise
floor determines the long-term stability of the clock and
is the quantity we seek to optimize. In Fig. 1(c), we
compare our analytical results with the results of the
numerical simulations as a function of Ramsey time T,
and in Fig. 2(a) we show the scaling with the number of
atoms. The analytical and numerical approaches are in
excellent agreement.

Thus far, we have assumed linear feedback and white
noise; we now relax these assumptions. The stability limit
identified above is mainly determined by the breakdown
of the assumption of small (i.e., linear) phase fluctuations.
In fact, the stability can be improved considerably by
using a feedback �! which is a nonlinear function of
the error signal E. To investigate this, we have included a
nonlinear feedback �!�tk	 / arcsin�E�tk	=J� in our nu-
merical simulations. In Fig. 1(c), it is seen that nonlinear
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FIG. 2. Inverse fractional frequency stability 1=�y (arbitrary
units) vs number of atoms N, with Ramsey time optimized for
(a) white noise and (b) 1=f noise. Points: numerical simula-
tions; lines: analytical results. Uncorrelated atoms (�) and
optimal spin squeezed atoms (�), both for linear feedback
(full lines, empty symbols) and nonlinear feedback (dashed
lines, filled symbols).
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feedback performs better, and that it extends the validity
of Eq. (5) all the way to �T � 0:1. For larger �T, the
feedback loop fails, resulting in a rapid decrease in
stability. If we optimize the Allan deviation in Eq. (5)
for nonlinear feedback, under the condition �T � 0:1, we
find that the optimally squeezed states have �Jy � N1=3

(�� N�1=6) resulting in a stability scaling as N�2=3. This
represents again a relative improvement in scaling ofN1=6

compared to the uncorrelated state for which the stability
scales as N�1=2. Detailed derivation of these results will
be presented elsewhere [22].

The assumption of white noise h��2i � �T is con-
venient for theoretical calculations, but in practice
very-low-frequency noise is likely to have a nontrivial
spectrum such as 1=f noise. To find the scaling with the
number of atoms in this situation, we replace h��2i � �T
with the behavior expected for 1=f noise: h��2i � ��T	2.
Repeating all the calculations above, we again find an
improvement by a factor of N1=6 by using squeezed states
for the nonlinear feedback loop, and a factor of N5=24 for
linear feedback. In Fig. 2(b), we compare these scaling
arguments to the numerical simulations and the two
approaches are seen to be in very good agreement.

In summary, we have shown that entanglement can
provide a significant gain in the frequency stability of
an atomic clock when it is limited by the stability of the
oscillator used to interrogate the atoms. The optimal
stability is achieved by using moderately squeezed states,
with a relative improvement that scales approximately as
N1=6 with the number of atoms. These results are in
contrast to previous studies [16] using simplified decoher-
ence models, which found that no practical improvement
can be achieved with entangled states. Finally, we note a
few interesting questions raised by our work. First, it
would be interesting to see if there exists special quantum
states of atoms and feedback mechanisms that optimize
the performance of the clock. Second, the present results
highlight that it is essential to have a realistic model of
230801-4
the noise (and possible stabilization mechanism) present
in specific realizations of quantum information protocols.
The protocol considered in this Letter exploits entangle-
ment to stabilize a classical system (the local oscillator),
and it would be interesting to study how similar consid-
erations (e.g., 1=f noise and collective decoherence) af-
fect protocols such as quantum error correction codes [1],
which use entanglement to stabilize a quantum system
and protect it from decoherence.
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