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Population Dynamics with Global Regulation: The Conserved Fisher Equation
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We introduce and study a conserved version of the Fisher equation. Within a population biology
context, this model describes spatially extended populations in which the total number of individuals is
fixed due to either biotic or environmental factors. We find a rich spectrum of dynamical phases
including a pseudotraveling wave and, in the presence of the Allee effect, a phase transition from a
locally constrained high density state to a low density fragmented state.
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The Fisher equation is one of the most well-studied
models in population biology and was originally written
down to describe the spread of an advantageous allele
[1,2]. Over the years the Fisher equation has been found to
arise in numerous contexts in which a perturbation
spreads in an excitable medium. Other examples abound
and include the spread of reaction fronts in chemically
bistable systems [3], switching in nonlinear optics [4],
and the spreading of bacterial colonies [5].

In the language of population biology, the Fisher equa-
tion is a spatial generalization of the logistic equation,
and is written in terms of ��x; t�, the density of advanta-
geous alleles:

@t� � Dr2�� r�� u�2; (1)

where D is the mobility of the individuals, r is the
reproduction rate in the absence of competition, and u is
a parameter related to the ‘‘carrying capacity’’ of the
system, which regulates the population density through
competition. The primary feature emerging from the
Fisher equation is that the density profile spreads via a
traveling wave. A simpleminded calculation, however,
does not provide a prediction for the velocity v. Much
effort has been invested to determine the possible values
of v for given initial conditions, using, primarily, the
technique of marginal stability analysis [6–8]. Front
propagation in the Fisher equation still poses interesting
mathematical challenges, with new results recently ap-
pearing concerning the effects of discreteness [9] and
internal noise [10].

The Fisher equation is the very simplest model of
spatial dynamics, in which competitive interactions be-
tween individuals occur locally. It is also possible to
envisage situations where population regulation occurs
globally due to the presence of a secondary agent. This
is most likely where the regulatory agent, whether biotic
or abiotic, is itself dispersed over a scale considerably
larger than the dispersal distance of the individuals them-
selves. For example, plant populations may be limited in
0031-9007=04=92(22)=228103(4)$22.50 
fly well beyond the limits of any particular population
[11]. Microbial colonies can also be limited by a resource,
such as nitrogen, that is dispersed over a scale larger than
the colony itself [12]. Wide-ranging predators may key in
on species once they become globally abundant and are
frequently encountered [13,14]. There has been an in-
creasing call for greater understanding of the scale over
which density dependence occurs in natural populations
[15–17]. A typical example in which humans play the role
of secondary agent is weed or pest control, in which the
total population is only tolerated below a fixed threshold
[18,19]. It is therefore of interest to consider a simple
model of spatial population dynamics in which the total
population size is regulated via a nonlocal mechanism. In
this Letter we shall describe an approach to this problem
based on the Fisher equation. We find a rich spectrum of
dynamical behaviors depending on spatial dimension and
the type of low density reproduction.

In order to impose fixed population size N in the Fisher
equation, it is necessary to allow the reproduction rate r
and/or the competition parameter u to be functions of
time. Thus, birth and death rates are continually adjusted
to ensure that the population has a fixed size. Con-
sequently, the conserved Fisher equation has the general
form (in spatial dimension d)

@t� � Dr2�� r�t��� u�t��2; (2)

with the auxiliary equation

r�t� � u�t�
Z
ddx��x; t�2: (3)

We have scaled the density of individuals by N such that
Eq. (3) ensures

R
ddx� � 1. As written, the conserved

Fisher equation includes a continuous spectrum of models
defined by a given reproduction rate r�t�, or equivalently
by a given competition function u�t�. In this Letter we
will study the simplest nontrivial case in which the com-
petition rate is taken to be constant. The regulation of the
population size is achieved by adjusting the linear birth
rate r�t�. We shall take the initial density to be localized
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evolves by spreading. After some time the density will
extend over a spatial scale �t� and have a saturated
amplitude of order �t��d.

We first focus on u � u0 > 0, with the dynamics oc-
curring in one spatial dimension. On the basis of prelimi-
nary numerical work, we observed that the population
density does indeed spread, but that the cluster size �t�
grows less quickly than a traveling wave, and the inter-
facial region separating the saturated density from zero
density broadens in time. To understand this analytically ,
we assume a ‘‘pseudotraveling wave’’ form for the den-
sity for large positive x:

��x; t� �
1

�t�
f
�
x� �t�
W�t�

�
; (4)

where W�t� is a measure of the width of the interfacial
region. (The function f tends to a constant for small x to
match the saturated density in this region.) Solutions
obtained from a direct numerical integration of Eq. (2),
using a simple Euler discretization, strongly support this
pseudotraveling wave. On inserting Eq. (4) into the con-
served Fisher equation, we generate a number of terms
with time-dependent coefficients. For large times it is
straightforward to show that three of these coefficients
balance each other. They are _=W, 1=2, and 1=W2.
This immediately implies that � t2=3 and W�t� �
1=2 � t1=3. Thus, the one-dimensional conserved Fisher
equation, with positive competition parameter u0, exhib-
its dynamical spreading, which is intermediate between a
traveling wave and pure diffusion. The linear size of the
population cluster grows superdiffusively as t2=3, while
the interfacial region grows subdiffusively as t1=3. A
similar analysis in two dimensions (assuming azimuthal
symmetry) indicates that both  and W grow diffusively
so that one cannot distinguish the linear size of the cluster
from the interfacial region. In this case, the system is
asymptotically dominated by pure diffusion. Presumably,
a whole host of intermediate dynamical regimes exists for
other choices of u�t�. With specific biological examples in
mind, it would be interesting to explore other cases.

It is worth mentioning that this system shows interest-
ing (and exactly solvable) dynamics for D � 0, namely,
when there are no local spatial interactions. For the
standard Fisher equation this is a trivial limit, since
then each point in space evolves under an independent
logistic process. However, in the conserved Fisher equa-
tion, the global constraint implicitly generates a coupling
between different spatial regions, such that deaths at one
place are balanced by births elsewhere, or vice versa. We
shall not enter into details of the calculation here, which
may be performed for general initial conditions, but give
the results for the specific initial condition

��x; 0� � A exp��jx=0j��: (5)

Setting D � 0 in Eq. (2), one can solve for the density,
and for large times one obtains:
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��x; t� �
1

�t�

�
exp

�������� x0
���������

�
�t�
0

�
�
�
�1

	
�1
; (6)

where �t� � t1=�1���. This solution is approximately uni-
form for jxj 	 �t� and decays as a stretched exponential
for large x. The density interpolates between these two
extremes over a length scaleW�t� in the region jxj � �t�,
and one finds W�t� � �t�1��.

We can actually use this solution to get a glimpse of the
properties of the system with local spatial interactions,
meaning D � 0. By assuming that the solution found
above in Eq. (6) still holds (which is not strictly true
since it does not satisfy the pseudotraveling wave ansatz),
we can compare the size of the Laplacian term with the
other growth terms in Eq. (2). The Laplacian term is only
non-negligible in the interfacial region, and thusD@2x��
1=�t�W�t�2. Comparing this to the term u0�

2 � 1=�t�2

immediately implies that W�t� � 1=2. Thus including
local interactions effectively selects a value of �, which
from comparison with the exact result W�t� � �t�1�� is
� � 1=2. As a consequence, we have �t� � t2=3 and
W�t� � t1=3 in agreement with the predictions of the
pseudotraveling wave ansatz.

For the remainder of this Letter we shall discuss some
particularly striking results which arise in the conserved
Fisher equation when the coefficients r and u are negative.
Clearly, in the context of the nonconserved Fisher equa-
tion r and u are strictly non-negative since otherwise the
equation is dynamically unstable. However, in the con-
served Fisher equation, the global constraint forbids a
dynamical instability. The biological motivation for
studying negative values of the linear reproduction rate
r is well known and arises in the following manner.
Population dynamics based on the logistic equation as-
sumes that in the absence of competition (i.e., at low
densities) the reproduction rate is positive. This reasoning
will break down in situations where reproduction be-
comes more difficult at lower population densities. In
such cases one speaks of the Allee effect [20,21]. The
most common example is bisexual reproduction. At low
densities it is difficult for individuals to find a mate and so
the effective reproduction rate becomes negative. Similar
effects occur for species that require a critical number of
individuals for resource collecting or for predator eva-
sion. The conserved Fisher equation with negative r�t�
and u�t� models the Allee effect in a population with
fixed total size. We shall concentrate solely on the case
of constant competition: u0 � �v0 < 0. Writing the
negative reproduction rate as r�t� � �s�t�< 0, we have

@t� � Dr2�� s�t��� v0�
2; (7)

with the auxiliary equation

s�t� � v0
Z
ddx��x; t�2: (8)

This equation supports a steady-state solution for the
density, but only in one dimension. Setting @t� � 0 and
228103-2



FIG. 1. The universal critical scaling function Q�u�.
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solving the resulting ordinary differential equation in
d � 1, we find the stable solution

��x� �
1

20
sech2

�
jxj
0

�
; (9)

where 0 � 12D=v0. This solution has been verified by
the direct numerical integration of (7). It is interesting
that this functional form commonly arises in 1D soliton
problems, a physical example being the polaron [22].

In higher dimensions there is no steady-state solution.
We proceed by assuming a dynamical scaling relation for
a density depending only on the radial coordinate:

��x; t� �
1

�t�d
F
�
jxj
�t�

�
: (10)

So long as the Laplacian term is balanced with the time
variation of the density, the length scale �t� � �Dt�1=2.
Then, for d > 2, the remaining terms are subdominant
and this process reduces to pure diffusion. It may well be
that new dynamical behavior arises in three dimensions
in the strong-coupling regime.

The case of two dimensions is most interesting since
the Laplacian term is perfectly balanced with the non-
linear terms. Furthermore, from a population biology
viewpoint, two dimensions is clearly the case of most
empirical relevance. Defining the ‘‘dimensionless cou-
pling constant’’ � � v0=D, we find (in the scaling limit
of large jxj and twith z � jxj=








Dt

p
finite) that the scaling

function F�z� satisfies the nonlinear ordinary differential
equation

F00 � �z=2� 1=z�F0 � F� �F�F� F0� � 0; (11)

where F0 � 2�
R
1
0 dzzF�z�

2.
Numerical analysis of this equation proceeds by adding

a fictitious time derivative @�F to the right-hand side and
iterating the equation under this ‘‘dynamics’’ using an
Euler discretization. The solution of (11) is the ‘‘steady
state’’ arising from this iteration method.We find that as �
is increased the function F�z� becomes progressively more
localized, collapsing to a � function at a critical value of
� � �c. This transition in the scaling function signals a
localization transition for the density: for � < �c the
population spreads in a diffusive manner (albeit with a
non-Gaussian scaling function), while for � > �c the
population becomes strictly localized in space. By moni-
toring the approach to criticality as a function of the grid
scale, we have estimated �c � 31:005�5� (close in value to
the integer 31 and �3 � 31:006 . . . , although equal to
neither as we shall see).

To further understand this phase transition for the
dynamical scaling function F�z�, we make a critical
scaling ansatz for F itself, in the spirit of Widom scaling
at a critical point. We write (for �  �c)

F�z� �
1

��c � ��
� h

�
z

��c � ���=2

�
: (12)
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Precisely at the critical point, the new scaling function
h�w� satisfies

h00 � h0=w� �ch�h� h0� � 0; (13)

where h0 � 2�
R
1
0 dwwh�w�

2 and the scaling variable
w � z=��c � ���=2. This equation can be cast into di-
mensionless form for Q�u� � h�w�=h0:

Q00 �Q0=u�Q2 �Q � 0; (14)

where u � w��ch0�1=2. By substituting these rescalings
into the definition of h0, we find a self-consistent expres-
sion for the critical coupling:

�c � 2�
Z 1

0
duuQ�u� � 2�

Z 1

0
duuQ�u�2: (15)

This reduces the calculation of the critical point to a
single well-defined numerical problem. We have solved
Eq. (14) to high precision (using iteration under fictitious
dynamics as described above, along with matching at
small u to an exact perturbative result). Using Eq. (15)
we find �c � 31:0032�1� and Q�0� � 2:3919 6�1�. The
critical scaling function is shown in Fig. 1. For large
values of u, Q is proportional to the modified Bessel
function K0�u�, which is significantly broader than the
Gaussian obtained for pure diffusion.

We emphasize that this large dimensionless critical
coupling constant was obtained for a density function
normalized to unity. If we work in terms of the original
density, normalized to N, with a dimensionless coupling
constant ��N�, then it is straightforward to show that

��N�c � �c=N � �31:0031 . . .�=N: (16)

By working backwards through our scaling transfor-
mations, we find that, close to the localization transition,
the original density function has the scaling form

��x; t� �
1

�c"�t�
Q
�
jxj
"�t�

�
; (17)

where the dynamical length scale "�t� grows as
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FIG. 2. The value of the dynamical scaling function eval-
uated at the origin, F�0�, which diverges at �c, shown on a log-
log plot against �c � �. The straight line has a slope of �1 and
an amplitude of 2.139, which allows for a determination of h0.
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"�t� � ��c � ��
�=2












Dt
�ch0

s
: (18)

The exponent � and the number h0 can be extracted by
studying the phase transition at the level of the dynamical
scaling function F�z�. By varying � in Eq. (11) and
solving numerically, we measure the divergence of F�0�,
which according to the critical scaling ansatz should
behave as

F�0� � h0Q�0���c � ����: (19)

In Fig. 2 we show a log-log plot of this quantity as the
critical point is approached. The straightness of the curve
validates a posteriori the critical scaling ansatz. The
data is consistent to within 1% error with the simple
result � � 1. Assuming this to be true, we can use the
data to infer h0 ’ 1:12. Thus, we can rewrite Eq. (18) as

"�t� �
































Dt
1:12

�
1�

�
�c

�s
: (20)

The existence of a localization transition in two di-
mensions is consistent with the results from a discrete
stochastic simulation of a population in two dimensions
with bisexual reproduction [23]. The global regulation of
population size is enforced by randomly selecting an
individual to die each time a successful mating event
occurs. The critical parameter �c is related to a critical
reproduction rate in this discrete process. The microscopic
model corresponding to the case of asexual reproduction
is essentially the contact process with conserved total
particle number, which has been studied recently in the
context of directed percolation [19,24]. It would be inter-
esting to look for the pseudotraveling wave in this case.

In conclusion, we have introduced a biologically moti-
vated variant of the Fisher equation in which the inte-
grated density is fixed due to global regulation. We have
found several novel dynamical behaviors for the simplest
case in which global regulation is enforced via the linear
228103-4
growth term. When this term is positive, we find that the
conventional traveling wave solution of the one-dimen-
sional Fisher equation is replaced by a pseudotraveling
wave described by the scaling form in Eq. (4). The
density profile spreads in time as �t� � t2=3, while the
interfacial region slowly broadens as W�t� � t1=3. When
the linear growth term is negative, which corresponds to
the Allee effect, we find a stationary density profile in one
dimension (which has a classic soliton profile) and a phase
transition in two dimensions, separating spreading and
strongly localized density profiles. We have analyzed this
phase transition in some detail, and, by using a critical
scaling ansatz, deduced the precise location of the tran-
sition and the form of the critical scaling function.
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