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We describe a new class of systems exhibiting return point memory (RPM), different from those
discussed before in the context of ferromagnets. We show numerically that one-dimensional random
Ising antiferromagnets have exact RPM when evolving from a large field, but not when started at finite
field, unlike the ferromagnetic case. This implies that the standard approach to understanding
ferromagnetic RPM will fail for this case. We also demonstrate RPM with a set of variables that keeps
track of spin flips at each site. Conventional RPM for the spins is a projection of this result, suggesting
that spin flip variables might be a more fundamental representation of the dynamics. We also present a
mapping that embeds the antiferromagnetic chain in a two-dimensional ferromagnet, and prove RPM
for spin-exchange dynamics in the interior of the chain with this mapping.
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FIG. 1. Schematic of hysteresis loop for a ferromagnet, show-
ing RPM. RPM is seen on the trajectory ABCB, or ABCDED,
or in general when H backtracks to a value that does not cross
the previous extremum (e.g., E cannot cross C for the path
ABCDED to show RPM). For zero temperature single spin flip
cycles under the application of a periodic field [10]. A
two-dimensional antiferromagnetic model, where each

dynamics, it can be proved [5] that the full spin configuration
on branch (3) is bounded by (1) and (2), whence RPM follows.
Many uses have been envisaged for nanomagnetic
structures; for example, as patterned media for disk
storage and as a possible means of information processing
[1]. Such structures are easy to fabricate, with the shape,
size, and separation of the individual magnetic units
chosen as desired. For instance, in recent experiments
[1–3], a large number of magnetic cylinders with a di-
ameter of order 100 nm are fabricated in a linear or
rectangular geometry, and a variety of techniques are
used to probe the magnetization, either of the whole
system or of individual nanomagnets. The interactions
between individual nanomagnets are very important,
and much of the experimental effort is in elucidating
the nature of these interactions and their consequences
for the system as a whole, particularly when an external
magnetic field is applied.

Among the diversity of hysteresis behavior seen in
magnetic systems, an important organizing principle is
the surprising phenomenon of ‘‘return point memory’’
(RPM) [4]. This is demonstrated in hysteresis loops for
ferromagnets, Fig. 1, where an applied field H is lowered
from saturation to Hmin, raised by an intermediate amount
to Hmax, and then lowered again to Hmin. In systems with
RPM, the final state of the system is identical to when it
first reaches Hmin. Generalizations are shown in Fig. 1. A
well-known demonstration of this phenomenon is
Barkhausen noise [6], where the noise observed in chang-
ing H of a ferromagnet is highly reproducible under
repeated cycling of the field [7].

RPM was elegantly proved [5] for a broad class of
ferromagnetic models (with zero temperature dynamics)
by building on the earlier no-passing theorem for charge
density waves [8]. However, many systems do not exhibit
RPM. For example, spin glass Hamiltonians with both
ferromagnetic and antiferromagnetic bonds violate return
point memory [9] and instead exhibit subharmonic limit
0031-9007=04=92(22)=227203(4)$22.50
spin is a Preisach hysteron [11], shows a phase transition
from a RPM to a non-RPM state as the antiferromagnetic
coupling is increased [12]. Even for ferromagnetic sys-
tems, dipolar interactions can cause RPM to break
down [13]. Therefore, from a theoretical point of view,
it is of interest to try to find the conditions for a system to
exhibit RPM.

In this Letter, we demonstrate the existence of a new
class of systems that satisfies RPM even though it violates
the conditions of the ferromagnetic proof [5]. This is
shown by examining fully antiferromagnetic Ising chains
in one dimension, with zero temperature (deterministic)
dynamics identical to those used for ferromagnetic sys-
tems. We find that, when started from a large H and fully
saturated magnetization, the system always satisfies
RPM. However, unlike the ferromagnetic case, if one
 2004 The American Physical Society 227203-1
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FIG. 2. Hysteresis curve for a one-dimensional Ising chain of
length 8, where the bonds are all antiferromagnetic and of
random strength. The lower curve shows the hysteresis curve
for a single realization of randomness, with H lowered from
1 to �1:4 (curve 1), raised to 1.4 (curve 2), and then lowered to
�1:4 again (curve 3). The magnetization M changes contrary to
H on (2) at H � 1:05 and on (3) at H � �1; apart from this
excursion, (3) coincides with (1) from �1:4 
 H 
 1:4. The
upper plot, shifted vertically by M � 0:5 for clarity, is a
similar graph for a chain of length 64 000. The analogs of
curves (1) and (3) for this graph are so close that they are
indistinguishable in the plot, but there is actually a small gap
between them. However, even for this case, return point mem-
ory (at H � �1:4) is exact.
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starts in a random state that is stable at some large field
Hs, and lowers the field to Hmin, then raising the field to
Hmax <Hs and returning it to Hmin changes the state.
From a practical perspective, this is not a severe restric-
tion since, if H is saturated in the distant past, RPM is
valid for any subsequent evolution of H�t� [14]. However,
the ferromagnetic proof [5] relies on a partial ordering of
spin configurations that is preserved by the dynamics
(called ‘‘no-passing’’), which must apply to an arbitrary
initial state. Since this is not true for the antiferro-
magnetic chain, the proof of RPM must be qualitatively
different.

Even for states descended from the saturated state, for
which RPM is satisfied, we find that no-passing is vio-
lated for the spin configuration: In Fig. 1, the spin con-
figuration on branch (3) is not bounded above and below
by (1) and (2), respectively. However, we have been able
to construct a new ‘‘spin flip’’ variable that does satisfy
no-passing when starting from a high field. (This is not
true starting from a random configuration; as discussed
in the previous paragraph, no such variable can exist.)
No-passing for the spin flip variable implies that it also
satisfies RPM. (The converse is not true, as seen with the
spin configuration.) Since the spin configuration can be
obtained as a projection of the flip state, this version of
RPM is stronger, suggesting that this new variable may be
a more fundamental way of understanding these systems.

We also investigate whether, going beyond single spin
flip dynamics [15], it is possible for the antiferromagnetic
chain to show RPM in the same sense as the ferromag-
netic case. We could show that this is the case with spin-
exchange dynamics [16] that conserve magnetization
except at the ends. We did this by embedding this 1D
antiferromagnetic problem in a 2D ferromagnetic system
which has single spin flip dynamics and therefore shows
return point memory. However, this mapping fails for
single spin dynamics in an interesting way: because under
this mapping single spin flips become nonlocal and the
standard proof [5] does not apply [17]. Therefore it is not
just the Hamiltonian, but the dynamics as well, that
determine whether or not a system satisfies RPM.

We consider the random antiferromagnetic Ising
model:

H � �
X

i

�Jisisi�1 � �hi �H�si�; (1)

where the bonds Ji and local fields hi are indepen-
dent random variables. All the Ji’s are negative, and
the hi’s are equally likely to be positive and negative. H
is the externally applied field. Initially, H is large and
positive, and all the spins point up. Thereafter, the field
is changed adiabatically. At any field, a spin is flipped
if doing so reduces the energy H of the system. This
spin flip can make other spins unstable, in which
case the process is repeated until there are no more spins
to flip. If several spins are unstable, the one which reduces
the energy the most is flipped. Because an avalanche
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propagates out from the original site, and the left and
right propagating directions are disjoint, the same results
would be obtained if all unstable spins were flipped
simultaneously or randomly. For all the numerical results
reported in this Letter, �107 random choices of fJi; hig
were tested.

Figure 2 shows a typical hysteresis loop, with random
bond disorder but no random fields (hi � 0). The bonds
are drawn from a distribution uniform over ��1; 0�.
Return point memory is seen at H � �1:4 the hysteresis
loop. RPM is also found when the hi’s are drawn from a
distribution uniform over ��1; 1�; if Ji � �1 for all i. In
both cases, although it cannot be shown in the figure,
RPM exists for the full spin configuration rather than just
M. However, if the Ji’s and hi’s are drawn from distri-
butions uniform over ��1;�1� �J� and ���h; �h�, re-
spectively, we find that RPM fails if �h * 0:01 and
�J * 0:01. Therefore either �h or �J must be zero for
RPM. The results are the same for open and periodic
boundary conditions [18]. (Even when �h and �J are
both nonzero, the deviation from RPM is quite small,
and hard to detect if one averages the hysteresis loop
over realizations of randomness. A similar phenomenon
was observed earlier for Sherrington-Kirkpatrick spin
glasses [19].)

An important difference between the ferromagnetic
and antiferromagnetic cases is that a spin at a single site
can flip several times while the magnetic field is varied
monotonically. As the field is lowered, a spin can flip
down; if its neighbors have already flipped down, they can
then be pushed back up by the new spin flip. As a result of
this, M does not vary monotonically with H. This can be
227203-2
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FIG. 3. Two-dimensional lattice with ferromagnetic bonds.
The dashed lines are to guide the eye; the spins are at the
black dots. The spins are forced to be up and down at the top
and bottom boundaries, respectively. The domain wall in
between maps to a one-dimensional spin chain. The case shown
corresponds to a chain of (eight) alternating spins. The hori-
zontal and diagonal bonds in the two-dimensional lattice
correspond to the random bonds and fields, respectively, of
the chain; for the system shown, h3 < 0 and h5 > 0. All bonds
in a vertical column are the same; for clarity, only some are
shown. An external field H on the chain is equivalent to a field
at the side edges, increasing as shown with a gradient H.
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seen in the plot for a single realization of randomness in
Fig. 2. In more detail, it is possible to observe that (i) an
avalanche that starts from a site and destabilizes both its
neighbors is possible only for ##"## going to #"#"# (or its
mirror image), where the initial site is in the middle. The
next nearest neighbors are stabilized, and the avalanche
covers only three sites. (ii) An avalanche that starts from
a site and destabilizes only one neighbor is possible only
for a configuration "## going to #"# (or its mirror image),
where the initial site is at the end. The avalanche covers
only two sites. Thus, as H is varied, the chain evolves
through single spin flips, two-site avalanches with
�M � 0, and three-site avalanches which have �M � 1
for decreasing H and �M � �1 for increasing H. These
results and more have been proven earlier with random
field disorder (without bond disorder), for the major hys-
teresis loop [20]; the full shape of the hysteresis loop was
found analytically [20]. We have extended the results of
[20] to prove (ii) for the major loop and (i) for the entire
hysteresis curve [22].

Motivated by the retrograde variation of M with H, we
construct an alternative representation of the dynamics in
terms of spin flips. Initially, when all the spins point up,
the flip variable is zero at each site. Thereafter, each time a
spin at site i is reversed, the flip variable li is increased by
1 if this happens when the field H is increasing, and
decreased by 1 if this happens when H is decreasing.
Clearly, along any branch of the hysteresis loop, while
H varies monotonically, so must each li. Also, si � 1�
2�limod 2�; and if two configurations � and � satisfy the
condition that l�i � l�i is even for all i, they correspond to
the same spin state. In our numerical simulations, we find
that, for the cases when RPM is valid, it also holds for the
flip configuration. Since the configuration fsig is a projec-
tion of flig, this is a stronger result than RPM, and
suggests that the dynamics in terms of flig is fundamental
to random antiferromagnetic chains.

With mi �
P

j�ilj, we find that no-passing is satisfied:
If H is decreased from Hmax to Hmin, increased to Hmax

and then returned to Hmin, for any H and any site i the
value of mi on the third segment of this path is bounded
below and above by the corresponding mi’s on the first
and second segments (see Fig. 1). This is not true for the
spin variables si [23]. However, as emphasized earlier,
RPM is not satisfied if one starts from an arbitrary initial
state at some H instead of the saturated state, so that
unlike the ferromagnetic case [5] the proof of RPM must
take into account the ancestry of a state.

To see whether RPM is influenced by the dynamics
used for the model, we now consider spin-exchange dy-
namics [16] instead of single spin flip [15]. A pair of
oppositely oriented neighboring spins are exchanged if
this is energetically favorable. Since this does not change
the overall magnetization, in order for there to be a
response to a magnetic field, we allow single spin flips
at the two ends of the chain (only open chains are
considered).
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This problem can be solved by embedding the antifer-
romagnetic chain in a two-dimensional ferromagnetic
model. We first consider the case when there is only
random bond disorder. Figure 3 shows a two-dimensional
square lattice of spins, rotated by an angle �=4.
Ferromagnetic bonds connect next nearest neighbors,
but (without random fields) not nearest neighbors. As
shown in the figure, the vertical bonds are all zero, and
the horizontal bonds are identical within each vertical
strip. At the top and bottom boundaries, the boundary
conditions force all the spins to be up and down, respec-
tively. Free boundary conditions are used on the side
walls. Thus, in its ground state, there is one horizontal
domain wall across the system. As shown in the figure, we
adopt a convention in which the domain wall consists of
line segments oriented at ��=4, i.e., along the principal
directions of the square lattice. The mapping from the
two-dimensional system to the one-dimensional chain is
as follows: If any line segment of the two-dimensional
domain wall is oriented at �=4 or ��=4, the correspond-
ing spin in the antiferromagnetic chain is 1 or �1,
respectively. The two-dimensional ground state corre-
sponds to alternating spins in the chain, as is appropriate
when H is zero.

For a general shape of the domain wall, whenever two
successive segments point in the same direction, a (hori-
zontal) bond is broken, whereas this does not happen
when they point in opposite directions. By choosing the
227203-3
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horizontal bond strengths to be �2J1;�2J2;�2J3; . . . ,
correlated vertically, the energy of the antiferromagnetic
chain is increased by �2Ji when spins i and i� 1 point in
the same direction compared to when they are opposite,
as desired for an antiferromagnetic chain. The magnetic
field H couples to

P
isi for the chain, which is equiva-

lent to the difference in height between the ends of the
two-dimensional domain wall. This is equivalent to a
magnetic field H on the rightmost column of the two-
dimensional system, with the left end of the domain wall
tethered. It is also possible to generalize the model to
include random bond disorder for the chain: Nearest
neighbor bonds of strength 2jhij are introduced in the
ith column, oriented at �=4 if hi is positive and ��=4 if
hi is negative.

With this construction, all bonds are ferromagnetic for
the two-dimensional system. Further, the fields at the side
boundaries vary monotonically with H. Further, spin-
exchange for the chain is equivalent to single spin flips
in the two-dimensional lattice. The results of Ref. [5] can
therefore be invoked. We conclude that, with these dy-
namics, RPM is valid for all configurations, and is valid
for simultaneous random field and random bond disorder.
Neither of these statements is valid for single spin flip
dynamics for the chain; the two-dimensional analog of
spin flip at a site on the chain is to move the entire domain
wall to the right of the site up or down by one unit if the
spin flips up or down.

In this Letter, we have shown that the hysteresis loop
for random Ising antiferromagnetic chains at zero tem-
perature exhibit return point memory (RPM). For spin
flip dynamics, the result is history dependent, being valid
only for configurations that start from saturated magne-
tization and a large magnetic field. This is unlike the
result for ferromagnets, where the result is valid for all
configurations, indicating that the mechanism for RPM is
different from the ferromagnetic case. (Also, RPM is
valid only if either random field or random bond disorder
is present, but not both, a restriction that does not apply to
ferromagnets.) For spin-exchange dynamics, we have
proven RPM by mapping to a two-dimensional ferromag-
netic model, and have therefore shown that it is as general:
valid for all configurations, and with simultaneous ran-
dom field and bond disorder. This implies that RPM
depends on the Hamiltonian and the dynamics used.
These results do not generalize to higher dimensional
antiferromagnets.

These results make trying to understand experiments
on one-dimensional nanomagnetic chains worthwhile [1–
3]. They often have an effective anisotropy due to their
shape that makes their behavior Ising-like. However,
more work needs to be done to see how to map these
continuous dynamics onto the ones used here.

We thank Peter Young for useful comments. A. D. ac-
knowledges support from NSF Grant No. DMR 0086287.
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