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Metastable superheated and supercooled vortex states in NbSe, crystals were probed with fast
transport measurements over a wide range of field and temperature. The limit of metastability of the
superheated vortex lattice defines a line in the phase diagram that lies below the superconducting
transition and is clearly separated from it. This line is identified as the vortex lattice spinodal, and is in
good agreement with recent theoretical predictions by Li and Rosenstein [Phys. Rev. B 65, 220504
(2002); cond-mat/0305258]. By contrast, no limit of metastability is observed for the supercooled

disordered state.
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Systems of many interacting particles often exhibit
metastability and irreversible behavior that betray the
presence of local minima in the free-energy landscape. In
the vicinity of a first-order transition, these local minima
can trap the system in a metastable superheated or super-
cooled, “wrong” phase [1]. The metastable region extends
up to the spinodal, a line in the phase diagram that
demarcates the limit of stability with respect to fluctua-
tions toward the thermodynamically stable state. Vortices
in superconductors provide a striking example of such a
system with metastability manifesting itself in super-
cooling [2,3] and superheating [4] as well as in more
surprising ways such as frequency memory [5] and non-
linear dynamics [6—9]. These phenomena appear in con-
junction with a sudden increase in the critical current as a
function of field or temperature, the so-called peak effect
[10], which is attributed to an order-disorder transition in
the vortex lattice [11-14]. Although the region of meta-
stability associated with this transition is observed in
many experiments, there is until now no evidence of a
spinodal line. In this Letter, we report results of fast
transport measurements on a superheated vortex lattice
that identify for the first time a spinodal line above which
the system becomes reversible.

The thermodynamically stable state of a type II super-
conductor in a magnetic field at low temperatures is a
lattice of vortices with quasi-long-range order [15]. As
the temperature is raised, the vortex lattice undergoes a
first-order transition [16,17] to a stable disordered state.
Transport measurements provide a fast and accurate way
to determine the degree of order in the vortex lattice, even
for very small samples where techniques such as neutron
scattering cannot be used. As shown by Larkin and
Ovchnnikov [11], the critical current where vortices first
start moving, /., decreases with increasing degree of
order as characterized by the size of coherent domains.
If, however, the measurement of /. is not sufficiently fast,
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as is often the case in standard transport techniques, it
will reflect a vortex lattice that has undergone some type
of current-induced organization rather than the initial
state [8] because vortices would have enough time to
reorder in response to the driving current. Current-
induced organization can result in a more disordered
lattice due to “edge contamination” [18] by new vortices
entering through a surface barrier at the sample edge
[19,20], or in a more ordered lattice due to ‘“motional
ordering” when vortices are driven at high velocities [21].
To avoid current-induced organization, we developed a
technique that probes the vortex response on time scales
shorter than reorganization times and can capture the
response of the initial (static) vortex state much like a
snapshot. The technique employs a four-probe measure-
ment to monitor the vortex response to an applied current
ramp and /. is defined as the current for which the
response reaches 5 wV. The ramps used in most measure-
ments discussed here were fast-current ramps (FCR) with
a sweep rate of 200 A/s. The sweep rate controls the
degree of current-induced organization. In the case of
FCR, the measurement time to obtain a voltage signal
within our resolution of AV ~1uV is 7=AV/
(Rypdl/dt) ~ 2 us, where R/ is the free flux flow resis-
tance [22]. During this time, the vortex moves less than
half a lattice spacing for typical field values used here. By
contrast, if the same vortex is probed with a slow-current
ramp ~1 mA/s, 7 ~ 0.4 s is much longer than the time to
traverse the entire sample (typically ~50 ms at 0.25 Tand
5 uV) so current-induced organization is inevitable.
The experiments were carried out on three 2H-NbSe,
crystals with critical temperatures 7, = 5.61, 7.01, and
6.0 K for samples A, B, and C, respectively. In Fig. 1, we
show the temperature dependence of /. in sample A for
vortex states obtained by three methods of preparation:
(i) Field cooling (FC), open diamonds, whereby the field
is applied prior to cooling through the superconducting
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FIG. 1. Temperature dependence of critical currents at H =

0.3 T obtained with several preparation and measurement
methods. Open symbols—measured at the preparation tem-
perature. Solid symbols—calculated from cold measured criti-
cal currents as described in the text. The arrow indicates the
decay of the supercooled FC state. Inset: Field-temperature
trajectories used in various methods of preparation.

transition. In this case the final vortex lattice is in a
disordered state as indicated by the high values of .. At
low temperatures the FC state is metastable. Any distur-
bance causes it to decay into the ordered state as indicated
by the arrow. (ii) Zero Field Cooling (ZFC), open tri-
angles, is obtained by applying the field after cooling to
the desired temperature. In this case, vortices penetrate
from the periphery moving into the sample at high speeds
and forming a motionally ordered state with /. signifi-
cantly lower than in the FC case. At low temperatures the
ZFC state is stable. (iii) ZFC Warm (ZFCW), open circles,
entails preparing the ZFC lattice at a low temperature
Ty = 4.2 K, and then heating it in the absence of applied
current to the target temperature 7, where it is allowed to
thermalize for 2—3 min and then measured with FCR.
This process results in a superheated lattice which re-
mains ordered up to a temperature higher than either the
ZFC or the FC lattice.

When probing the properties of a metastable state, the
measurement process can drive the system into the more
stable state. Therefore in order to establish the limit of
superheating it is necessary to use noninvasive measure-
ments. Indeed, we found that in spite of using FCR the V-1
curves of the ZFCW state in the vicinity of peak effect,
shown in Fig. 2, were N shaped which is a signature of
current-induced organization [9,20]. Since this indicates
that our measurement is too slow in this temperature
range, we followed a different procedure: The ZFCW
lattice was not probed at T but, after waiting at T for
a few minutes, it was cooled back to 7, and then mea-
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FIG. 2. N-shaped voltage-current curves for the ZFCW lat-
tice at H = 0.3 T in sample A close to the peak temperature are
a signature of current induced organization.

sured with FCR. The critical currents obtained by this
procedure, henceforth referred to as ‘“‘cold-measured-
critical currents” and labeled /..(T,), are shown in Fig. 3
(circles). They were used to calculate (as described below)
the values of I.(T) for the ZFCW state in the temperature
range where they were not accessible by direct measure-
ment. These calculated values are shown in Fig. 1 by solid
circles. For comparison, we also show in Fig. 3 the
cold-measured critical currents I,..(T}) for the ZFC state
(triangles) obtained in a similar manner by preparing the
state at 7; and measuring it after cooling to T,. The
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FIG. 3. Cold-measured critical currents at H = 0.3 T, for
vortex lattices prepared at 7 and measured at T, = 4.4 K. T
is the limit of metastability for the ordered state. For T < T,
excursions in temperature do not affect /... The right-hand
ordinate is the fraction of disordered state along the minimal
current cross section as described in the text.
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same qualitative behavior is seen in both data sets: at low
temperatures, I..(T,) = I,.,(T,) is constant, where I.,(T})
is the critical current of the ordered state prepared and
measured at 7. Above an onset temperature T, I..(T})
starts increasing and ultimately saturates to the value of
the disordered state, I.,(T}), at a higher temperature T} =
T,. For T <T,,, excursions in temperature leave the
critical currents unchanged, while excursions beyond it
lead to an irreversible increase in I..(T). The saturation
temperature, 7, ~ 5.18 K, is highest in the ZFCW lattice
as expected of a superheated state. We will show below
that this temperature corresponds to the spinodal point. In
the same figure, we show the data for the FC lattice
(diamonds) which remains in a supercooled disordered
state at all temperatures.

We attribute these results to the crossing of a phase
boundary between ordered and disordered states. In the
vicinity of this boundary domains of ordered and disor-
dered phase can coexist as shown previously by Hall
probe microscopy [23] and magneto-optical imaging
[24]. The critical current in this heterogeneous state is
determined by the sample cross section along which the
average critical current density is lowest, corresponding
to the cross section where the fraction of disordered state
is minimal. At the onset of vortex motion, the current
density along the minimal cross section takes the value of
the local critical current density [25] as determined by
the type of domain traversed. It follows that, if « is the
fraction of disordered phase measured along this path, the
critical current will be I, = al.; + (1 — a)l,,, where I,
and 1., are the critical currents in the disordered and
ordered phases, respectively. Our data suggests that the
disordered domains remain unchanged upon cooling, so
that the cooled state is a replica of the state at Tj.
Therefore, the cold-measured critical currents corre-
spond to a state where the fraction of disordered state is
a(Tl) and Icc(Tl) = a(Tl)ch(TO) + [1 - a(Tl)]Ico(TO)-
Using the measured values of [I..(T;), I.,T,), and
1.,(T,), we obtain «(T;) also shown in Fig. 3. We note
that this “two-phase-coexistence”” model gives I..(T;) =
I.,(Ty) at «(T;) = 0, even if the sample contains islands
of disordered phase, as long as there is a contiguous sheet
connecting opposite edges of the sample in which all
vortices are in the ordered phase. Such a sheet cannot be
found when the disordered phase percolates cutting the
sample lengthwise—in this case «(7) > Oand 1..(T) >
I1.,(T,). Beyond this point, as «(T}) increases with tem-
perature, so does I..(T}). As long as «(T;) < 1, there are
ordered islands embedded in the sample until they dis-
appear at a(T,) = 1, where the entire sample is disor-
dered. For a ZFCW lattice measured with FCR at T, the
current-induced organization is essentially absent so that
the disordered phase can only be nucleated by thermal
fluctuations. Therefore, the limit of superheating of the
ordered phase coincides with the point where the ZFCW
lattice becomes thermally disordered, at T,. Indeed, for
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T > T, we find that the vortex lattice is always disor-
dered, and metastability or hysteresis are absent, regard-
less of the method of preparation or measurement speed.
We conclude that it is not energetically possible for an
ordered domain to exist above this temperature, and
therefore we identify it with the spinodal point for the
superheated vortex lattice in 2H-NbSe,. By contrast, we
found no limit of supercooling for the FC state. By
repeating the measurements for several field values, we
obtained the phase diagram shown in Fig. 4 in terms of
the reduced variables t = T/T, and h = H/H_,, where
H,, is the upper critical field at 7 = 0 [26]. The spinodal
points z, lie on a line well separated from the critical line
t. and is above the onset 7,, and peak 7, temperatures for
the ZFC lattice.

As a check on the two-state coexistence model, we used
the values of a(T)) to calculate I.(T)) = a(T)I.4(T;) +
[1 = a(T})]I,,(T,), the critical current of the static vortex
lattice at temperatures 7, where it is experimentally
accessible with the FCR. The calculated 1.(T;) for the
ZFC state, shown in Fig. 1 (solid triangles), are in close
agreement with the directly measured data validating the
assumptions in the model. In the same figure, we show the
calculated values of I.(T)) for the ZFCW state (solid
circles) up to temperatures where it is experimentally
inaccessible with FCR.

Repeating the experiments for samples B and C
produced the same behavior. Both samples revealed a
spinodal point for the superheated vortex lattice but no
evidence for a limit of supercooling. As shown in Fig. 4,
the spinodal points for samples B and C lie on the same
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FIG. 4 (color online). The measured limit of superheating for
samples A, B, and C (circles), is compared with the calculated
LR spinodal (solid line). The calculated melting line (dashed
line) lies well above the measured peak (squares) and onset
(diamonds) temperatures of the peak effect. The schematic free
energy diagrams show the relative depth of the minima of the
disordered (D) and ordered (O) phases in each regime.
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line as those of sample A even though they are from
different batches, with different impurity content.

We compare our data to recent theoretical results of Li
and Rosenstein [27] (LR) for the spinodal and melting
lines. In terms of the dimensionless scaled temperature,
ar(t, h) = —=[(G)"2a/2'2]2P[(1 — 1 — myi~*h=25],
the LR theory gives the melting and spinodal lines at
ar =—9.5 and ay = —5, respectively. Here Gi=
1/8(kgT,./ce,£)? is the Ginzburg number [27], & the
zero temperature coherence length, & = (m,,/m,)"/? the
anisotropy parameter, £, = (®,/4mA)? the characteristic
vortex line energy, and A the London penetration depth at
zero field and temperature. We used € = 0.3, A = 135 nm
[28], and & = 8.8 nm [26] for sample A (¢ = 8.2 nm,
8.3 nm for samples B and C, respectively) to calculate
the LR lines for the melting and spinodal shown in Fig. 4.
The LR spinodal lines for the three samples merge into
the line thickness in the figure. We note that the LR
spinodal line practically coincides with our data and is
well separated from both the melting line f,,(k) and from
t.(h). The agreement between experiment and theory
confirms the validity of identifying the limit of super-
heating with the vortex spinodal. Another prediction of
the LR theory is that for a system of particles with
repulsive interactions there is no limit of supercooling.
This is consistent with the data presented here.

We note that the theoretical melting line does not
coincide with one of the characteristic peak effect fea-
tures. This allows us to address a long-standing question
regarding the peak effect, i.e., whether it is the onset, the
peak, or neither [4,12—14] that signals the phase transi-
tion. Clearly, the LR melting line coincides with neither.
In the two-phase coexistence model, this is not surprising
because T,, marks the point where the disordered phase
percolates while T, is determined by the competition
between the nucleation of disordered states that tend to
increase the critical current and the approach to 7., which
tends to lower it.

The schematic free-energy diagrams in Fig. 4 summa-
rize the results presented here in terms of a two-phase
model. Below the spinodal line, the free-energy has two
minima corresponding to disordered and ordered phases.
Below the melting line ¢ < ¢, the ordered phase is stable
and the disordered one metastable, while for ¢, < <t
the roles are reversed. At the spinodal line, t = ¢,, the
minimum corresponding to the ordered phase is replaced
by an inflection point and for # > ¢, the ordered phase no
longer can exist.
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