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Differential Charge Sensing and Charge Delocalization in a Tunable Double Quantum Dot
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We report measurements of a tunable double quantum dot, operating in the quantum regime, with
integrated local charge sensors. The spatial resolution of the sensors allows the charge distribution
within the double dot system to be resolved at fixed total charge. We use this readout scheme to
investigate charge delocalization as a function of temperature and strength of tunnel coupling,
demonstrating that local charge sensing can be used to accurately determine the interdot coupling in
the absence of transport.
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FIG. 1. Scanning electron micrograph of a device similar to
the measured device, consisting of a double quantum dot with
quantum point contact charge sensors formed by gates 8/9 (13/
14) adjacent to the left (right) dot. Series conductance gdd
in quantum dot two-level systems compared to transport
methods [4].

through the double dot was measured simultaneously with
conductances gls and grs through the left and right sensors.
Coupled semiconductor quantum dots have proved a
fertile ground for exploring quantum states of electron
charge and spin. These ‘‘artificial molecules’’ are a scal-
able technology with possible applications in information
processing, both as classical switching elements [1,2] and
as charge or spin qubits [3]. Charge-state superpositions
may be probed using tunnel-coupled quantum dots, which
provide a tunable two-level system whose two key pa-
rameters, the bare detuning � and tunnel coupling t
between two electronic charge states [4], can be con-
trolled electrically.

In this Letter we investigate experimentally a quantum
two-level system, realized as left/right charge states in a
gate-defined GaAs double quantum dot, using local elec-
trostatic sensing (see Fig. 1). In the absence of tunneling,
the states of the two-level system are denoted �M� 1; N�
and �M;N � 1�, where the pair of integers refers to the
number of electrons on the left and right dots. For these
two states, the total electron number is fixed, with a single
excess charge moving from one dot to the other as a
function of gate voltages. When the dots are tunnel
coupled, the excess charge becomes delocalized and the
right/left states hybridize into symmetric and antisym-
metric states.

Local charge sensing is accomplished using integrated
quantum point contacts (QPCs) positioned at opposite
sides of the double dot. We present a model for charge
sensing in a tunnel-coupled two-level system, and find
excellent agreement with experiment. The model allows
the sensing signals to be calibrated using temperature
dependence and measurements of various capacitances.
For significant tunnel coupling, 0:5kBTe & t < � (Te is
electron temperature, � is the single-particle level spac-
ing of the individual dots), the tunnel coupling t can be
extracted quantitatively from the charge-sensing signal,
providing an improved method for measuring tunneling
0031-9007=04=92(22)=226801(4)$22.50 
Charge sensing using a QPC was first demonstrated in
Ref. [5], and has been used previously to investigate
charge delocalization in a single dot strongly coupled to
a lead in the classical regime [6], and as a means of
placing bounds on decoherence in an isolated double
quantum dot [2]. The backaction of a QPC sensor, leading
to phase decoherence, has been investigated experimen-
tally [7] and theoretically [8]. Charge sensing with suffi-
cient spatial resolution to detect charge distributions
within a double dot has been demonstrated in a metallic
system [9,10]. However, in metallic systems the interdot
tunnel coupling cannot be tuned, making the crossover to
charge delocalization difficult to investigate. Recently,
high-bandwidth charge sensing using a metallic single-
electron transistor [11], allowing individual charg-
ing events to be counted, has been demonstrated [12].
Recent measurements of gate-defined few-electron
GaAs double dots [13] have demonstrated dual-QPC
charge sensing down to N;M � 0; 1; 2; . . . , but did not
focus on sensing at fixed electron number, or on charge
delocalization. The present experiment uses larger dots,
2004 The American Physical Society 226801-1
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FIG. 2 (color). (a) Double dot conductance gdd as a function
of gate voltages V2 and V10. White lines indicate the honey-
comb pattern.Within each honeycomb cell, the electron number
on each dot is well defined, with M (N) referring to the electron
number in the left (right) dot. (b),(c) Simultaneously measured
sensing signals from left (b) and right (c) QPCs. �gls (�grs) are
QPC conductances after subtracting a best-fit plane. See text for
details. The horizontal pattern in (b) and vertical pattern in (c)
demonstrate that each sensor is predominantly sensitive to the
charge on the dot it borders.
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containing �200 electrons each (though still with tem-
perature less than level spacing, see below).

The device we investigate, a double quantum dot with
adjacent charge sensors, is formed by 16 electrostatic
gates on the surface of a GaAs=Al0:3Ga0:7As heterostruc-
ture grown by molecular beam epitaxy (see Fig. 1). The
two-dimensional electron gas layer, 100 nm below the
surface, has an electron density of 2� 1011 cm�2 and
mobility 2� 105 cm2=Vs. Gates 3/11 control the interdot
tunnel coupling while gates 1/2 and 9/10 control coupling
to electron reservoirs. In this measurement, the left and
right sensors were QPCs defined by gates 8/9 and 13/14,
respectively; gates 6, 7, 15, and 16 were not energized.
Gaps between gates 5/9 and 1/13 were fully depleted,
allowing only capacitive coupling between the double
dot and the sensors.

Series conductance, gdd, through the double dot was
measured using standard lock-in techniques with a volt-
age bias of 5 �V at 87 Hz. Simultaneously, conductances
through the left and right QPC sensors, gls and grs, were
measured in a current bias configuration using separate
lock-in amplifiers with 0.5 nA excitation at 137 and
187 Hz. Throughout the experiment, QPC sensor conduc-
tances were set to values in the 0.1 to 0:4 e2=h range by
adjusting the voltage on gates 8 and 14.

The device was cooled in a dilution refrigerator with
base temperature T � 30 mK. Electron temperature Te at
base was �100 mK, measured using Coulomb blockade
peak widths with a single dot formed. Single-particle
level spacing �� 80 �eV for the individual dots was
also measured in a single-dot configuration using dif-
ferential conductance measurements at finite drain-
source bias. Single-dot charging energies, EC � e2=Co �
500 �eV for both dots (giving dot capacitances Co �
320 aF), were extracted from the height in bias of
Coulomb blockade diamonds [14].

Figure 2(a) shows gdd as a function of gate voltages V2

and V10, exhibiting the familiar ‘‘honeycomb’’ pattern
of series conductance through tunnel-coupled quantum
dots [15–17]. Conductance peaks at the honeycomb ver-
tices, the so-called triple points, result from simultane-
ous alignment of energy levels in the two dots with the
chemical potential of the leads. Although conductance
can be finite along the honeycomb edges as a result
of cotunneling, here it is suppressed by keeping the dots
weakly coupled to the leads. Inside a honeycomb, the
electron number in each dot is well defined as a result
of Coulomb blockade. Increasing V10 (V2) at fixed V2 (V10)
raises the electron number in the left (right) dot one
by one.

Figures 2(b) and 2(c) show left and right QPC sensor
signals measured simultaneously with gdd. The sensor
data plotted are �gls�rs�, the left (right) QPC conductances
after subtracting a best-fit plane (fit to the central hexa-
gon) to remove the background slope due to cross cou-
pling of the plunger gates (gates 2 and 10) to the QPCs.
The left sensor shows conductance steps of size �3�
226801-2
10�3 e2=h along the (more horizontal) honeycomb edges
where the electron number on the left dot changes by one
[solid lines in Fig. 2(b)]; the right sensor shows conduc-
tance steps of size �1� 10�2 e2=h along the (more ver-
tical) honeycomb edges where the electron number of the
right dot changes by one [solid lines in Fig. 2(c)]. Both
detectors show a conductance step, one upward and the
other downward, along the �45� diagonal segments con-
necting nearest triple points. It is along this shorter seg-
ment that the total electron number is fixed; crossing the
line marks the transition from �M� 1; N� to �M;N � 1�.
Overall, we see that the transfer of one electron between
one dot and the leads is detected principally by the sensor
nearest to that dot, while the transfer of one electron
between the dots is detected by both sensors, as an up-
ward step in one and a downward step in the other, as
expected.

Focusing on interdot transitions at fixed total charge,
i.e., transitions from �M� 1; N� to �M;N � 1�, we present
charge-sensing data taken along the ‘‘detuning’’ diagonal
by controlling gates V2 and V10, shown as a red diagonal
line between the triple points in Fig. 3(a). Raw data (no
226801-2
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FIG. 3 (color). (a) Double dot conductance gdd as a function
of gate voltages V2 and V10 in the vicinity of a triple point.
Same color scale as in Fig. 2(a). The detuning diagonal (red
line) indicates the fixed-charge transition between �M� 1; N�
and �M;N � 1�. (b) Left and right QPC conductance with no
background subtraction (blue points), along the detuning di-
agonal, with fits to the two-level model, Eq. (2) (black curves).
See text for fit details. (c) Excess charge (in units of e) in the
left and right dot, at T � 30 mK (blue), 200 mK (green), and
315 mK (red). Corresponding values of Te extracted from the
fits (solid curves) are 102, 196, and 315 mK.
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background subtracted) for the two sensors are shown in
Fig. 3(b). The transfer of the excess charge from left dot to
right dot causes conductance steps on both QPCs, clearly
discernible from background slopes caused by coupling of
gates 2 and 10 to the QPCs.

Also shown in Fig. 3(b) are fits to the raw sensor data
based on a model of local sensing of an isolated two-level
system in thermal equilibrium, which we now describe.
Varying V2 and V10 along the red diagonal changes the
electrostatic energy difference, or bare detuning �, be-
tween �M� 1; N� and �M;N � 1� states. The lever arm
relating gate voltage to detuning is set by the slope of the
diagonal cut [see Fig. 3(a)] and various dot capacitances,
and can be calibrated experimentally as described below.
When the tunnel coupling t mixing these two states is
small compared to the single-particle level spacings for
the individual dots, we can consider a two-level system
whose ground and excited states, separated by an energy
� �

������������������
�2 � 4t2

p
, consist of superpositions of �M� 1; N�

and �M;N � 1� [18]. The probability of finding the
excess charge on the left dot while in the ground
(excited) state is 1

2 �1
 �=��. The excited state is popu-
lated at finite temperature, with an average occupation 1=
�1� exp���=kBTe��. The average excess charge (in units
of e) on the left and right dots is thus

�
hmi �M
hni � N

�
�

1

2

�
1


�
�

tanh

�
�

2kBTe

��
: (1)
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Our model assumes that each sensor responds linearly to
the average excess charge on each dot, but more sensi-
tively to that on the nearest dot, as demonstrated experi-
mentally in Fig. 2. The resulting model for sensor
conductance is

gls�rs� � gol�or� � �gl�r�
�
�

tanh

�
�

2kBTe

�
�

@gl�r�
@�

�: (2)

The first term on the right-hand side is the background
conductance of the QPC, the second term represents the
linear response to average excess charge, and the third
represents direct coupling of the swept gates to the QPC.
As shown in Fig. 3(b), our model gives very good fits to
the data. For each trace (left and right sensors), fit pa-
rameters are gol�or�, �gl�r�, @gl�r�=@�, and Te. In these data,
the tunnel coupling is weak, and we may set t � 0.

Figure 3(c) shows the effect of increasing electron
temperature on the transition width. Here, vertical axes
show excess charge extracted from fits to QPC sensor
conductance data. Sweeps along the red diagonal were
taken at refrigerator temperatures of 30 mK (blue),
200 mK (green), and 315 mK (red). We use the 315 mK
(red) data to extract the lever arm relating voltage
along the red diagonal [see Fig. 3(a)] to detuning �. At
this temperature, electrons are well thermalized to the
refrigerator, and thus Te � T. The width of the sensing
transition at this highest temperature lets us extract the
lever arm, which we then use to estimate the elec-
tron temperature for the blue (green) data, getting
Te � 102 �196� mK.

We next investigate the dependence of the sensing
transition on interdot tunneling in the regime of strong
tunneling, t * kBTe. Figure 4 shows the left QPC sensing
signal, again in units of excess charge, along the detuning
diagonal crossing a different pair of triple points, at base
temperature and for various voltages on the coupling
gate 11. For the weakest interdot tunneling shown (V11 �
�1096 mV), the transition was thermally broadened,
i.e., consistent with t � 0 in Eqs. (1) and (2), and did
not become narrower when V11 was made more negative.
On the other hand, when V11 was made less negative, the
transition widened as the tunneling between dots in-
creased. Taking Te � 102 mK for all data in Fig. 4 and
calibrating voltage along the detuning diagonal by setting
t � 0 for the V11 � �1096 mV trace allows tunnel cou-
plings t to be extracted from fits to our model of the other
tunnel-broadened traces. We find t � 10 �eV (2.4 GHz)
(green trace), t � 16 �eV (3.9 GHz) (turquoise trace),
and t � 22 �eV (5.3 GHz) (purple trace). Again, fits to
the two-level model are quite good, as seen in Fig. 4.

Finally, we compare tunnel coupling values extracted
from charge sensing to values found using a transport-
based method that takes advantage of the t dependence of
the splitting of triple points (honeycomb vertices) [4,19].
In the weak tunneling regime, t � �, the splitting of
triple points along the line separating isocharge regions
226801-3
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FIG. 4 (color). Excess charge on the left dot, extracted from
left QPC conductance data, along a detuning diagonal (crossing
different triple points from those in Fig. 3) at base temperature
and several settings of the coupling gate 11. The temperature-
broadened curve (red) widens as V11 is made less negative,
increasing the tunnel coupling t. See text for details of fits
(solid curves). Top right inset: comparison of t values extracted
from sensing (circles) and transport (triangles) measurements,
as a function of V11. Colored circles correspond to the tran-
sitions shown in the main graph. Lower left inset: Schematic
energy diagram of the two-level system model, showing
ground and excited states as a function of detuning �, with
splitting (anticrossing) of 2t at � � 0.
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�M� 1; N� and �M;N � 1� has two components in the
plane of gate voltages, denoted here as �V10 and �V2. The
lower and upper triple points are found where the lowest
energy M� N � 1 state (the delocalized antisymmetric
state) becomes degenerate with the charge states �M;N�
and �M� 1; N � 1�, respectively. Using the electrostatic
model in Ref. [4], we can show that �V10�2� are related to
various dot capacitances and t by

�V10�2� �
jej

Cg10�g2�

�
Cm

Co � Cm
� 2t

Co � Cm

e2

�
: (3)

Here, Cg10�g2� is the capacitance from gate 10(2) to the left
(right) dot, Co is the self-capacitance of each dot, and Cm
is the interdot mutual capacitance. All these capacitances
must be known to allow extraction of t from �V10�2�.
Gate capacitances Cg10�g2� are estimated from honeycomb
periods along respective gate voltage axes, �V10�2� �
jej=Cg10�g2� � 6:8 mV. Self-capacitances Co can be ob-
tained from double dot transport measurements at finite
bias [4]. However, lacking that data, we estimate Co from
single-dot measurements of Coulomb diamonds [14].
Mutual capacitance Cm is extracted from the dimension-
less splitting �V10�2�=�V10�2� � Cm=�Co � Cm� � 0:2,
measured at the lowest tunnel coupling setting.

Tunnel coupling values as a function of voltage on
gate 11, extracted both from charge sensing and triple-
point separation, are compared in the inset of Fig. 4. The
two approaches are in good agreement, with the charge-
sensing approach giving significantly smaller uncertainty
226801-4
for t * 0:5kBTe. The two main sources of error in the
sensing approach are uncertainty in the fits (dominant at
low t) and uncertainty in the lever arm due to a conser-
vative 10% uncertainty in Te at base. Error bars in the
transport method are set by the smearing and deforma-
tion of triple points as a result of finite interdot coupling
and cotunneling. We note that besides being more sensi-
tive, the charge-sensing method for measuring t works
when the double dot is fully decoupled from its leads.
Like the transport method, however, the sensing approach
assumes t � � (which may not be amply satisfied for the
highest values of V11).

In conclusion, we have demonstrated differential
charge sensing in a double quantum dot using paired
quantum point contact charge sensors. States �M� 1; N�
and �M;N � 1�, with fixed total charge, are readily re-
solved by the sensors, and serve as a two-level system
with a splitting of left/right states controlled by gate-
defined tunneling. A model of local charge sensing of a
thermally occupied two-level system agrees well with the
data. Finally, the width of the �M� 1; N� ! �M;N � 1�
transition measured with this sensing technique can be
used to extract the tunnel coupling with high accuracy in
the range 0:5kBTe & t <�.
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