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Self-Organized Quantum-Wire Lattice via Step Flow Growth of a Short-Period Superlattice
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We develop a theoretical model for step flow growth of multilayer films, taking into account the
interlayer step-step interaction induced by misfit strain. We apply the model to simulate the growth of
strain-compensated short-period superlattices. Step-bunch ordering improves in successive layers,
leading to self-organized growth of a lattice of quantum wires. This quantum-wire array has
some similarities to the ‘‘lateral composition modulation’’ observed experimentally in short-period
superlattices.
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(b)   
FIG. 1 (color online). Cross section of the final structure in
our simulation, consisting of 12 bilayers of alternating layers of
equal tension and compression, with each layer 4 ML thick.
Vertical scale is expanded by �10 times for clarity. (a) Entire
system. (b) Expanded view of a particularly well-ordered
where xi is the position of the ith step, F is the adatom
flux, and fi is the force per unit length on the ith step. B is

region of (a), showing more clearly the individual steps. Note
the excellent uniformity of bunch size and spacing.
Smooth epitaxial films are often grown by step flow on
a vicinal surface, so that adatom attachment at step edges
preempts island nucleation. Even in step flow growth, the
film morphology may become rough due to step bunching.
Early studies had focused on understanding the bunching
mechanisms in an attempt to suppress step bunching.
Recently, however, it has been recognized that self-
organized step bunching can lead to relatively uniform
step-bunch arrays, with potential applications for nano-
fabrication [1,2].

Theoretical models of step flow growth have generally
been limited to the surface of a semi-infinite solid [1–7].
However, when the bunching is driven by strain-mediated
step interactions (rather than kinetic factors), surface
steps can interact with buried interface steps. This inter-
action is particularly important for thin layers or short-
period superlattices.

Here, we examine theoretically the step dynamics
when such interlayer interactions are included. We find
that these interactions contribute to step bunching, and,
more importantly, lead to correlations between successive
layers. This opens the possibility of three-dimensional
ordering. In particular, we simulate the growth of short-
period superlattices with alternating tensile and compres-
sive layers. We find strong long-range ordering of step
bunches, not only within a layer, but also between layers.
The resulting structure is, in effect, an ordered lattice of
quantum wires, as seen in Fig. 1. This structure also has
some similarities to the lateral composition modulation
seen experimentally in short-period superlattices [8–13].

We begin with a 1D model for step flow growth at a
surface under stress. Integration of the adatom diffusion
equation with appropriate step boundary conditions leads
to the following step velocity [1,3]:
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a constant related to the adatom diffusion coefficient and
the adatom formation energy.

For a semi-infinite solid,

fi � f�1�i �
X
j�i

�
�
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�xj � xi�
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�xj � xi�3

�
: (2)

The first term is the misfit strain-induced long-range
monopole-monopole attraction between steps [3]. The
second term is the short-range dipole-dipole repulsion
between steps. Here 
1 � CsF1F2 is the interaction
strength between two force monopoles (F1 and F2). For
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two surface steps, F1 � F2 � Fs � hs�
�A;B�
xx , where hs is

the step height, �xx is the stress of the topmost layer (A or
B) and Cs � �1� �2�=�2�E�, where � is the Poisson ratio
and E is Young’s modulus. 
2 denotes the strength of the
short-range interaction between the two surface dipoles.

For multilayer growth, we include also the force f�2�i on
surface steps due to buried interface steps:

fi � f�1�i � f�2�i (3)

and

f�2�i �
X
kl

�

l�xkl � xi���zkl � zi�

2 � �xkl � xi�
2�

��xkl � xi�2 � �zkl � zi�2�2

�
�l�xkl � xi�

�xkl � xi�
2 � �zkl � zi�

2

�
: (4)

The force f�2�i arises from the additional force on the ith
surface step due to its elastic monopole-monopole inter-
actions with the buried steps at the interfaces between
previous layers. xkl and zkl denote the position of the kth
step in the lth layer [14]. Here 
l � �ClFsFl and �l �
�1� 2��
l, where Cl �

Cs
4�1��� and Fs is the surface mono-

pole. Fl � 	hs��A
xx � �B

xx� is the interface monopole at
the lth buried layer, proportional to the stress difference
between the two layers (A and B) at the buried step. (We
neglect any difference between the elastic moduli and
step heights of the two materials.) Obviously, the addi-
tional interlayer step-step interaction will influence the
step flow growth of subsequent layers. It is particularly
interesting to see whether such interaction can improve
the self-organized ordering of the strain-induced step
bunching.

In general there could also be dipole interactions be-
tween surface steps and buried steps. However, the step
dipole arises largely from the reconstruction of the sur-
face (and of the step itself), and will be much weaker at
an interface step. For this reason, and because of the
short-range nature, we neglect any dipoles at buried steps.
In contrast, the interface-step monopole is equal to the
difference between the surface monopoles for the respec-
tive layers, so for alternating tensile and compressive
layers, the interface monopole is the sum (in absolute
magnitude) of the two surface monopoles.

It is well known that various intermixing processes can
occur at steps and interfaces during heteroepitaxy, and
these can lead to a less abrupt interface. As long as the
mixing does not extend through the entire layer, this
broadens the monopole associated with each step, but
does not affect its magnitude. If the step bunches are
well separated laterally compared to this broadening,
such intermixing should have little effect on the overall
dynamics.

At a vicinal surface, the strain-induced monopole-
monopole interaction between steps is always attractive
[3]. In a multilayer growth, the interlayer monopole-
monopole interaction may be either attractive or repul-
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sive, even when the monopoles have the same sign,
depending on the step-step separation. From Eq. (4), we
deduce that the lateral force in the x direction between the
ith step on the surface and the kth step in the lth buried
layer is attractive (repulsive) beyond the range of j�xj >���������������������
�=�1� ��

p
j�zj but repulsive (attractive) within, if the

two monopoles point at the same (opposite) direction,
where �x � xi � xkl is the lateral separation between the
two steps, and �z � zi � zkl is the vertical separation
[14]. The range of attraction and repulsion between a
surface step and a buried step depends on the depth of
the buried step. Thus, the effect of buried steps on the
growth and ordering of surface steps can be tuned by
changing layer thickness.

We apply this model to investigate a strategy for
growth of a self-organized lattice of quantum wires. We
consider a strain-compensated superlattice, where the
layers all have equal thickness, and the two alternating
materials have tensile and compressive misfit of equal
magnitude. (This could be, e.g., layers of InxAl1�xAs of
different x, grown on an InP substrate.) Consequently, the
total stress is zero; as long as the individual layers are
thin, there should be no tendency to introduce misfit
dislocations. Then the interlayer interaction can drive
the surface step bunches to align with the step bunches
at buried interfaces, forming a three-dimensional array
of step bunches (a two-dimensional lattice in cross sec-
tion). If the superlattice layers are thin compared to the
bunch size, the result is a lattice of quantum wires.

This behavior is clearly seen in Fig. 1. For this simu-
lation, we use a simulation cell containing 120 steps in
each layer, with periodic boundary conditions. The aver-
age step spacing is Lav � 52, with a step height of 0.5,
corresponding to a vicinal surface of 0:55� miscut. Other
parameters are B � 1:0, 
1 � 1:0, 
2 � 100, and � �
0:28. We start with a substrate having random step dis-
tribution, and grow the first strained A layer using the
same procedure as in earlier work [1]. Then we continue
with the overgrowth of the first strain-compensating B
layer. The cycle of alternating A and B growth is repeated
to form a multilayer film, and the surface steps interact
with the buried steps in all previous layers.

During the growth, steps at the surface (whether A or
B) are always under a long-range attractive interaction,
due to strain-induced elastic monopoles at the surface
steps. Their interaction with the buried steps underneath
is long-range attractive and short-range repulsive between
the same types of layers (i.e., between A-A or B-B layers),
while the opposite is true between the different type of
layers (i.e., between A-B or B-A layers). This is because
force monopoles at steps have opposite signs for the two
types of layers. For our specific parameters, the interlayer
step-step interaction between two different type layers is
attractive for j�xj < 0:62j�zj and repulsive for j�xj >
0:62j�zj. Also, the magnitude of monopoles at the buried
steps are twice as large as those at the surface steps.
225503-2
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FIG. 2 (color online). The pair correlation function of the
steps at the surface of A layers in A-B superlattice, for the A1,
A3, A5, A7, A9, and A11 layers of the 12-bilayer film of Fig. 1.
The results are each averaged over ten configurations well
separated in time. Note the progressive improvement of order-
ing during growth of successive layers.
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Figure 1 shows a film cross section that resulted from
the evolution of simulated step configurations of a 12-
bilayer multilayer film, using a flux of F � 38. The thick-
ness of each layer is chosen to be 4 monolayers (MLs).
The periodic lateral thickness modulation of the A and B
layers, due to step bunching and ordering, forms auto-
matically a lattice of quantum wires. This is clearer in
Fig. 1(b), which gives an expanded view of a particularly
well-ordered region from Fig. 1(a).

The modulation in Fig. 1 is also strongly reminiscent of
the lateral composition modulation that has been ob-
served experimentally in several compound semiconduc-
tor systems [8–13]. In both cases, the local composition
averaged over alternating A and B layers corresponds to
A-rich and B-rich columns (or sheets in 3D). We believe
that the basic driving force is the same in both cases—the
strain-mediated interaction between the morphology of
the surface and of the buried interfaces [15]. However,
the systems studied experimentally are presumably not
grown in step flow mode, and the columns are roughly
vertical. In our simulations, the columns are at an angle
to the surface normal, reflecting the role of step flow
dynamics.

The ordering mechanism and process observed here are
similar to those found in step flow growth of a single-
layer strained film [1]. As in that case, there is a competi-
tion between strain-induced bunching and flux-induced
debunching. The flux-induced debunching becomes pro-
gressively more important with increasing bunch size. As
a result, the bunch size initially increases with time, but
this leads to stronger debunching, and eventually the
system reaches a steady-state bunch size determined by
the competition between strain-induced step bunching
and flux-induced debunching. Because we have thin
layers, the bunching requires several layers to reach a
steady state. (In multilayer growth, the meaning of
‘‘steady state’’ is slightly different than for a simple
surface, because the degree of bunching must vary be-
tween the beginning and the end of growth of each layer.
This may also affect the degree of order, since optimal
ordering is obtained when the average bunch size is an
integer [1].)

We note that the interlayer interactions effectively in-
crease the driving force for step bunching in the strain-
compensated system, so that to obtain a given bunch size,
a larger flux is needed for the multilayer system. For
example, for the case shown in Figs. 1 and 2, the average
bunch size is four steps, the same as achieved in a single-
layer film in Ref. [1]. However, a larger flux of 38 is
needed for the multilayer growth than 30 for the single-
layer growth [1], because effectively a larger step-step
attraction is present in the multilayer film, resulting from
the additional interlayer step-step interactions. Such a
condition is further confirmed by the growth of multi-
layer films with either too large a flux (F � 40) or too
small a flux (F � 30); both lead to a decrease of bunch
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ordering because they result in a noninteger average
bunch size, the former less than 4 and the latter larger.

As the step bunches grow with successive layers, they
also become increasingly ordered, and good ordering is
achieved at around the same point where the bunches
reach their asymptotic size. The improvement of step-
bunch ordering with successive layers can be clearly
seen in the step pair correlation functions shown in
Fig. 2. By the seventh bilayer (i.e., seventh superlattice
period, an overall growth of 56 ML), step bunches self-
organize into an array with an average bunch size of four
steps and very good long-range order. The good bunch
order is then maintained in all the subsequent layers. The
same behavior is observed for the B layers.

The 2D quantum-wire superlattice exhibits a striking
degree of order. This is illustrated by the plots of 2D
correlation function for steps from the 7th to the 11th
layer shown in Fig. 3. The bunches in these layers are
maintained with four steps, displaying very good
long-range order in both the x and z directions. This is
225503-3



FIG. 3 (color online). 2D correlation function of steps from
the 7th to the 11th layer, illustrating the formation of a 2D array
of step bunches. (a) Between the same type of steps �A-A� �
�B-B�. (b) Between the different type of steps �A-B� � �B-A�.
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FIG. 4 (color online). Structure factor of steps from the 7th to
the 11th layer, showing the high degree of symmetry and order
of the 2D array of step bunches.
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indicated by the equally spaced packed peak positions,
with a lateral separation of 4Lav (4 times of average step
separation) and a vertical separation of dav (layer thick-
ness), and by the well-defined high-order peaks. The high
degree of symmetry of the 2D superlattice is shown by the
plot of structure factor in Fig. 4, illustrating again the
excellent ordering.

While we have used layers of equal thickness here,
equally good strain compensation can be obtained with,
e.g., one layer twice as thick but with half the misfit of the
other layer. Thus the same approach could be used to
obtain more isolated wires of the larger misfit material.
This could be, e.g., InAs wires in an InxAl1�xAs matrix
on an InP substrate, for optoelectronic applications.
Also, different growth rates could be used for the
respective materials, allowing independent control of
the degree of step bunching. Thus there are many oppor-
tunities for tuning the self-organization to achieve a
desired structure.

In conclusion, we have developed a theoretical model
for step flow growth of strained multilayer film, taking
into account strain-induced interlayer step-step interac-
tion. We demonstrate that such interaction can help to
progressively improve the step-bunch ordering in the
growth of a multilayer film consisting of different layer
sequences and thicknesses. Furthermore, we apply the
model to simulate growth of strain-compensated multi-
layer films of alternating compressive and tensile strained
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layers, which provides a potentially useful method
for fabricating quantum-wire superlattice. The self-
organized step bunches with uniform size and spacing
generate a quantum-wire superlattice with good long-
range order. The method also effectively avoids disloca-
tion formation and allows flexible choice of materials.
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