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Exact Maximal Height Distribution of Fluctuating Interfaces
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We present an exact solution for the distribution P�hm; L� of the maximal height hm (measured with
respect to the average spatial height) in the steady state of a fluctuating Edwards-Wilkinson interface in
a one dimensional system of size L with both periodic and free boundary conditions. For the periodic
case, we show that P�hm; L� � L�1=2f�hmL

�1=2� for all L > 0, where the function f�x� is the Airy
distribution function that describes the probability density of the area under a Brownian excursion over
a unit interval. For the free boundary case, the same scaling holds, but the scaling function is different
from that of the periodic case. Numerical simulations are in excellent agreement with our analytical
results. Our results provide an exactly solvable case for the distribution of extremum of a set of strongly
correlated random variables.
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the heights are strongly correlated and hence a knowledge height H�x; t�,
Fluctuating interfaces are among the most well studied
nonequilibrium systems due to their simplicity as well as
numerous practical applications in systems such as grow-
ing crystals, molecular beam epitaxy, fluctuating steps on
metals, and growing bacterial colonies [1]. While the past
studies mostly focused on the scaling properties of the
surface roughness characterized by the average width of
the surface height [1], the more recent theoretical and
experimental studies have dealt with a variety of other
important characteristics of a fluctuating interface. These
include the distribution of the width of heights in the
steady state [2], the statistics of first-passage events or
persistence [3,4], the density of local maxima or minima
of heights [5], the distribution of the spatially averaged
height [6], as well as the distribution of height at any fixed
point in space [7] in growing one dimensional Kardar-
Parisi-Zhang (KPZ) interfaces [8], the cycling effects [9],
the distribution of extremal Fourier intensities [10], etc.

Recently Raychaudhuri et al. [11] studied a different
characteristic, namely, the global maximal relative height
(MRH) (measured with respect to the spatially averaged
growing height) of a fluctuating interface. This is an
important observable for two principal reasons. First, it
has important technological significance such as in bat-
teries where a short circuit occurs when the highest point
of a metal surface on one electrode reaches the opposite
one [11]. Second, the maximal height is an extreme ob-
servable measuring a rare event. While the extreme value
statistics is well understood for a set of independent
random variables [12], only recently physicists have
been paying attention to the distribution of the extremum
of a set of correlated random variables, as this question is
appearing increasingly frequently in a number of prob-
lems ranging from disordered systems [13] to various
problems in computer science such as growing search
trees[14] and networks [15]. In a fluctuating interface,
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of the distribution of their maximum (or minimum)
would provide important insights into this important
general class of extreme value problems where the random
variables are correlated.

In Ref. [11], the authors argued quite generally that
the MRH hm of an interface in its stationary state in a
finite system of size L scales as the roughness of the
surface, hm � L
 for large L, where 
 is the roughness
exponent. This indicates that the normalized probability
density function (PDF) of hm has a scaling form,
P�hm; L� � L�
f�hm=L
�. This was demonstrated nu-
merically in [11] for a one dimensional lattice model
belonging to the Edwards-Wilkinson (EW) universality
class [16], where 
 � 1=2. Further, it was argued that the
scaling function f�x� is sensitive to the boundary con-
ditions [11].

In this Letter, using simple path integral techniques we
present an exact solution of the scaling function f�x� for
the one dimensional EW model, both for the periodic and
the free boundary conditions. For the periodic boundary
case, we show that the scaling function f�x� is the so-
called Airy distribution function (not to be confused with
the Airy function) which is the PDF of the area under a
Brownian excursion over a unit interval and has been well
studied in the mathematics literature [17–20]. We also
calculate exactly the corresponding scaling function for
the free boundary condition and show that it is different
from the periodic case. All the moments of hm are also
computed exactly for both the boundary conditions. These
results are in excellent agreement with the simulation
results obtained by the numerical integration of the dis-
cretized 1D EW equation. Our results thus provide an
exactly solvable case for the distribution of the extremum
of a set of strongly correlated random variables.

Our starting point is the one dimensional EW model
[16] which prescribes a linear evolution equation for the
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@H�x; t�
@t

�
@2H�x; t�

@x2
� ��x; t�; (1)

where ��x; t� is a Gaussian white noise with zero mean
and a correlator, h��x; t���x0; t0�i � 2��x� x0���t� t0�.
The Eq. (1) has a soft (zero wave vector) mode since the
spatially averaged height H�x; t� �

R
L
0 H�x; t�dx=L keeps

on growing with time (typically as
��������
t=L

p
) even in a finite

system of size L. Hence, it is useful to subtract this zero
mode from the height and define the relative height,
h�x; t� � H�x; t� �H�x; t�, whose distribution then
reaches a stationary state in the long time limit in a finite
system. Note that, by definition,

Z L

0
h�x; t�dx � 0: (2)

We see later that this constraint of zero total area under
the relative height h plays an important role in determin-
ing the MRH distribution. All the other nonzero modes of
h evolve identically as those of the actual height H.

We first consider the periodic boundary condition,
h�0� � h�L�. In this case, one can decompose the rela-
tive height h�x; t� into a Fourier series, h�x; t� �P

1
m��1

~hh�m; t�e2�imx=L. Substituting this in Eq. (1), one
finds that different nonzero Fourier modes decouple from
each other and one can easily calculate any correlation
function. In particular, it is easy to see that the height
h�x; t� at any given point converges to a stationary
Gaussian distribution as t! 1, Pst�h� � e�h

2=2w2
=������������

2�w2
p

, where the width w�L� �
���������
hh2i

p
�

�����������
L=12

p
for

all L. Moreover, one can also show that h@xh@x0hi !
��x� x0� � 1=L in the stationary state. The local slopes
@xh are thus uncorrelated except for the overall constraint
due to the periodic boundary condition,

R
L
0 dx@xh � 0

that gives rise to the residual 1=L term. These facts can
be collected together to write the joint probability dis-
tribution of the heights (multivariate Gaussian distribu-
tion) in the stationary state as

P
fhg� �C�L�e�1=2
R
L

0
d��@�h�2

� �
h�0� � h�L���
�Z L

0
h���d�

�
; (3)

where C�L� is a normalization constant and the two delta
functions take care, respectively, of the periodic bound-
ary condition and the zero area constraint in Eq. (2).
The constant C�L� �

�������
2�

p
L3=2 can be evaluated exactly

by integrating Eq. (3) over all heights and setting it to
unity [21]. One can check that if one integrates out all
the heights in Eq. (3) except at one point, one recovers
the single point stationary height distribution mentioned
before.

We next define the cumulative distribution of the MRH,
F�hm; L� � Prob
maxfhg< hm; L�. The PDF of the MRH
is simply the derivative, P�hm; L� �

@F�hm;L�
@hm

. Clearly
F�hm; L� is also the probability that the heights at all
225501-2
points in 
0; L� are less than hm and can be formally
written using the measure in Eq. (3) as a path integral,

F�hm; L� � C�L�
Z hm

�1
du

Z h�L��u

h�0��u
Dh���e�1=2

R
L

0
d��@�h�2

� �
�Z L

0
h���d�

�
I�hm; L�; (4)

where I�hm; L� �
Q
L
��0 �
hm � h���� is an indicator func-

tion which is 1 if all the heights are less than hm and zero
otherwise. All the paths inside the path integral propagate
from its initial value h�0� � u to its final value h�L� � u,
where u � hm (since by definition hm is the maximum). A
change of variable, y��� � hm � h��� and v � hm � u, in
the path integral in Eq. (4) gives

F�hm; L� �C�L�
Z 1

0
dv

Z y�L��v

y�0��v
Dy���e�1=2

R
L

0
d��@�y�2

� �
�Z L

0
y���d�� A

�
I�hm; L�; (5)

where I�hm; L� �
QL
��0 �
y���� and A � hmL. Note that

hm appears only through A in the delta function, and
hence F�hm; L� � F �A; L�. In subsequent calculations,
we keep a general A in Eq. (5) and finally use A � hmL.
Next we take the Laplace transform with respect to A in
Eq. (5) and identify the quantity inside the exponential as
the action corresponding to a single particle quantum
Hamiltonian, ĤH � � 1

2
@2

@y2 � V�y�, where V�y� � !y for
y > 0 and V�y� � 1 for y � 0. The latter condition takes
care of the indicator function. Using the standard bra-ket
notation we get

Z 1

0
F �A; L�e�!AdA � C�L�

Z 1

0
dvhvje�ĤHLjvi

� C�L�Tr
e�ĤHL�; (6)

where Tr is the trace. Thus our problem is reduced to
calculating just the eigenvalues of the above Hamil-
tonian ĤH which has only bound states and hence discrete
eigenvalues. Solving the Schrödinger equation, one finds
that the wave function (up to a normalization constant)
is simply  E�y� � Ai
�2!�1=3�y� E=!��, where Ai�z� is
the standard Airy function [22]. This wave function
must vanish at y � 0 which determines the discrete ei-
genvalues, Ek � 
k!

2=32�1=3 for k � 1; 2; . . . , where 
k’s
are the magnitude of the zeros of Ai�z� on the negative
real axis. For example, one has 
1 � 2:3381 . . . , 
2 �
4:0879 . . . , 
3 � 5:5205 . . . , etc. Upon formally inverting
the Laplace transform in Eq. (6) and putting A � hmL,
we find

F�hm; L� �
�������
2�

p
L3=2

Z �i1

�i1

d!
2�i

e!hmL
X1
k�1

e�
k!
2=32�1=3L:

(7)

Taking derivative with respect to hm in Eq. (7) and mak-
ing a change of variable, ! � sL�3=2, we arrive at our
225501-2
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main result, P�hm; L� � L�1=2f�hmL
�1=2� for all L, where

the Laplace transform of f�x� is given by

Z 1

0
f�x�e�sxdx � s

�������
2�

p X1
k�1

e�
ks
2=32�1=3

: (8)

Interestingly, the right-hand side (rhs) of Eq. (8) turns
out precisely to be the Laplace transform of the PDF of
the area under a Brownian excursion over a unit interval
[19]. A Brownian excursion over the interval 
0; 1� is
simply a Brownian motion pinned at zero at the two
ends of the interval and conditioned to stay positive in
between. Inverting the Laplace transform in Eq. (8) one
obtains f�x�, known as the Airy distribution function
[19],

f�x� �
2

���
6

p

x10=3
X1
k�1

e�bk=x
2
b2=3k U��5=6; 4=3; bk=x

2�; (9)

where bk � 2
3
k=27 and U�a; b; z� is the confluent hyper-

geometric function [22]. In Fig. 1, we have plotted f�x� in
Eq. (9) using the Mathematica and compared it with the
numerical scaling function generated by collapsing the
data for three different system sizes obtained by numeri-
cally integrating the space-time discretized form of
Eq. (1). Evidently the agreement is very good.

It is easy to obtain the small x behavior of x from
Eq. (9), since only the k � 1 term dominates as x! 0.
Using U�a; b; z� � z�a for large z, we get as x! 0,

f�x� !
8

81

9=2
1 x�5 exp

�
�

2
3
1

27x2

�
: (10)

This essential singular tail near x! 0 was conjectured in
[11] based on numerics, though the exact form was miss-
0 1 2 3
x

0

1

2

3

4

f (
x)

FIG. 1 (color online). The scaling function f�x� for the MRH
distribution for both the periodic (the top four curves) and the
free (the lower four curves) boundary conditions. In both cases,
the numerical curves (shown by symbols) are obtained by
collapsing the data from the numerical integration of the
space-time discretized form of the EW Eq. (1) for three system
sizes L � 256, L � 384, and L � 512. They are compared to
the corresponding analytical scaling functions (solid lines).
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ing. The asymptotic behavior at large x is more tricky to
derive [23] from Eq. (9). Even the calculation of moments
from Eq. (8) is rather nontrivial. However, it is possible to
write down an exact recursion relation for the moments
[18,19] and using these results, we get hhnmi � MnLn=2,
where M0 � 1, M1 �

���������
�=8

p
, M2 � 5=12, M3 �

15
����
�

p
=64

���
2

p
, M4 � 221=1008, etc. Only the second mo-

ment hh2mi � 5L=12 was computed before in [11] by using
a different method. Finally, one finds that for large n,
Mn � �n=12e�n=2. Substituting an anticipated large x de-
cay of the form, f�x� � exp
�axb� inMn �

R
1
0 f�x�x

ndx,
we get Mn � �n=abe�n=b for large n. Comparing this with
the exact large n behavior of Mn we get a � 6 and b � 2,
indicating f�x� � exp
�6x2� as x! 1.

There is an alternative elegant probabilistic derivation
of the above result which we outline briefly. It proceeds by
establishing the equivalence

h�x� � B�x� �
1

L

Z L

0
B���d�; (11)

where h�x� is the stationary EW interface with periodic
boundary condition, B�x� is a Brownian bridge [a
Brownian motion such that B�0� � B�L� � 0] and �
means that the left-hand side (lhs) has the same proba-
bility distribution as the rhs. First, by construction the rhs
satisfies the area constraint in Eq. (2). Second, both the
lhs and the rhs of Eq. (11) are Gaussian variables and
hence to establish the equivalence in Eq. (11), it is suffi-
cient to show that their respective two-point correlators
are identical. For example, one finds[21] from Eq. (1) that
in the stationary state, hh�x�h�x0�i � 
L2=6� Ljx� x0j �
�x� x0�2�=2L for all L. Similarly, one can calculate the
two-point correlator of the rhs using the representation
B��� � x��� � �x�L�=L, where x��� is ordinary Brownian
motion starting at x�0� � 0 and with a correlator,
hx���x��0�i � min��; �0�. This representation guarantees
that B�0� � B�L� � 0. We find that the two-point corre-
lator of the rhs is exactly the same as hh�x�h�x0�i. This
establishes the equivalence in law in Eq. (11) rigorously.
Hence, the maximum of h�x� has the same distribution as
the maximum of the rhs of Eq. (11) which, incidentally,
was computed by Darling in the context of statistical data
analysis and he found [17] exactly the same Laplace
transform as in Eq. (8).

We next consider the free boundary condition where
the two ends of the interface are held free. In this case,
the joint distribution of heights in the stationary state is
given by the same formula as in Eq. (3), except without
the delta function �
h�0� � h�L��. This changes the nor-
malization constant to C�L� � L. However, unlike the
simple trace in the periodic case in Eq. (6), the Laplace
transform in the free case turns out to be more compli-
cated [21]. Omitting details, we find the same scaling as in
the periodic case, P�hm; L� � L�1=2f�hmL�1=2�, though
the scaling function has a different Laplace transform
~ff�s� �

R
1
0 f�x�s

�sxdx,
225501-3
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~ff�s� � s2=32�1=3
X1
k�1

C�
k�e
�
ks2=32�1=3

; (12)

where C�
� � 

R
1
�
Ai�z�dz�

2=
Ai0��
��2 and Ai0�z� �
dAi�z�=dz. This Laplace transform does not seem to
have appeared before in the mathematics literature. One
can again express the function f�x� in terms of the con-
fluent hypergeometric function [21], a Mathematica plot
of which is shown in Fig. 1 that matches well with the
numerical simulations. The small x behavior can again be
found easily and we get

f�x� !
2

���
2

p

27
����
�

p C�
1�

7=2
1 x�4 exp

�
�

2
3
1

27x2

�
; (13)

where C�
1� � 3:302 78 . . . , evaluated using the Mathe-
matica. Thus the function f�x� decays slightly faster as
x! 0 compared to the periodic case in Eq. (10). We also
calculated the moments exactly [21], hhnmi � -nLn=2,
where -0 � 1, -1 �

���������
2=�

p
, -2 � 17=24, -3 �

123
���
2

p
=140

����
�

p
, etc. We found that for large n, -n �


n=3e�n=2 which provides the asymptotic large x tail of
f�x�, f�x� � exp
�3x2=2� that falls off less rapidly than
the periodic case where f�x� � exp
�6x2�.

In summary, we have presented exact analytical results
for the maximal height distribution of the 1D EW inter-
face in its steady state, with different boundary condi-
tions. For the periodic boundary condition, our result
explains the numerical results of Ref. [11]. But our
method also predicts new results for other boundary con-
ditions. Besides, our result is robust and holds even for 1D
KPZ equation since it has the same steady state measure
as the EW equation in one dimension. We have verified
this theoretical prediction numerically [21]. Also, our
path integral technique is quite general and can, in prin-
ciple, be used to calculate other physically interesting
quantities, such as the distribution of the difference be-
tween the maximum and the minimum heights of a
surface. It would be interesting to extend our method to
higher dimensions where little is known about the maxi-
mal height of a growing surface.

Finally, many experimental systems are well described
by the 1D EW equation (1). Examples include, among
others, the high-temperature step fluctuations in Si(111)-
Al surfaces[4,24] and the displacements of nonmagnetic
particles in dipolar chains at low magnetic field[25].
Besides, the displacements of beads in a polymer chain
with harmonic interaction (the Rouse model [26]) also
evolve via the 1D EW equation. Thus our results are
relevant in these systems and hopefully the MRH distri-
bution can be measured experimentally in such systems.

We thank Y. Shapir, S. Raychaudhuri, and C. Dasgupta
for useful correspondence and discussions.
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